+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Non-alcoholic fatty liver and the gut microbiota

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          Non-alcoholic fatty liver (NAFLD) is a common, multi-factorial, and poorly understood liver disease whose incidence is globally rising. NAFLD is generally asymptomatic and associated with other manifestations of the metabolic syndrome. Yet, up to 25% of NAFLD patients develop a progressive inflammatory liver disease termed non-alcoholic steatohepatitis (NASH) that may progress towards cirrhosis, hepatocellular carcinoma, and the need for liver transplantation.

          In recent years, several lines of evidence suggest that the gut microbiome represents a significant environmental factor contributing to NAFLD development and its progression into NASH. Suggested microbiome-associated mechanisms contributing to NAFLD and NASH include dysbiosis-induced deregulation of the gut endothelial barrier function, which facilitates systemic bacterial translocation, and intestinal and hepatic inflammation. Furthermore, increased microbiome-modulated metabolites such as lipopolysaccharides, short chain fatty acids (SCFAs), bile acids, and ethanol, may affect liver pathology through multiple direct and indirect mechanisms.

          Scope of review

          Herein, we discuss the associations, mechanisms, and clinical implications of the microbiome's contribution to NAFLD and NASH. Understanding these contributions to the development of fatty liver pathogenesis and its clinical course may serve as a basis for development of therapeutic microbiome-targeting approaches for treatment and prevention of NAFLD and NASH.

          Major conclusions

          Intestinal host–microbiome interactions play diverse roles in the pathogenesis and progression of NAFLD and NASH. Elucidation of the mechanisms driving these microbial effects on the pathogenesis of NAFLD and NASH may enable to identify new diagnostic and therapeutic targets of these common metabolic liver diseases.

          This article is part of a special issue on microbiota.

          Related collections

          Most cited references 70

          • Record: found
          • Abstract: found
          • Article: not found

          Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease

          Nonalcoholic fatty liver disease (NAFLD) is a burgeoning health problem of unknown etiology that varies in prevalence among ethnic groups. To identify genetic variants contributing to differences in hepatic fat content, we performed a genome-wide association scan of nonsynonymous sequence variations (n=9,229) in a multiethnic population. An allele in PNPLA3 (rs738409; I148M) was strongly associated with increased hepatic fat levels (P=5.9×10−10) and with hepatic inflammation (P=3.7×10−4). The allele was most common in Hispanics, the group most susceptible to NAFLD; hepatic fat content was > 2-fold higher in PNPLA3-148M homozygotes than in noncarriers. Resequencing revealed another allele associated with lower hepatic fat content in African-Americans, the group at lowest risk of NAFLD. Thus, variation in PNPLA3 contributes to ethnic and inter-individual differences in hepatic fat content and susceptibility to NAFLD.
            • Record: found
            • Abstract: found
            • Article: not found

            Bile acids: regulation of synthesis.

             John Chiang (2009)
            Bile acids are physiological detergents that generate bile flow and facilitate intestinal absorption and transport of lipids, nutrients, and vitamins. Bile acids also are signaling molecules and inflammatory agents that rapidly activate nuclear receptors and cell signaling pathways that regulate lipid, glucose, and energy metabolism. The enterohepatic circulation of bile acids exerts important physiological functions not only in feedback inhibition of bile acid synthesis but also in control of whole-body lipid homeostasis. In the liver, bile acids activate a nuclear receptor, farnesoid X receptor (FXR), that induces an atypical nuclear receptor small heterodimer partner, which subsequently inhibits nuclear receptors, liver-related homolog-1, and hepatocyte nuclear factor 4alpha and results in inhibiting transcription of the critical regulatory gene in bile acid synthesis, cholesterol 7alpha-hydroxylase (CYP7A1). In the intestine, FXR induces an intestinal hormone, fibroblast growth factor 15 (FGF15; or FGF19 in human), which activates hepatic FGF receptor 4 (FGFR4) signaling to inhibit bile acid synthesis. However, the mechanism by which FXR/FGF19/FGFR4 signaling inhibits CYP7A1 remains unknown. Bile acids are able to induce FGF19 in human hepatocytes, and the FGF19 autocrine pathway may exist in the human livers. Bile acids and bile acid receptors are therapeutic targets for development of drugs for treatment of cholestatic liver diseases, fatty liver diseases, diabetes, obesity, and metabolic syndrome.
              • Record: found
              • Abstract: found
              • Article: not found

              Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis.

              Mice lacking the nuclear bile acid receptor FXR/BAR developed normally and were outwardly identical to wild-type littermates. FXR/BAR null mice were distinguished from wild-type mice by elevated serum bile acid, cholesterol, and triglycerides, increased hepatic cholesterol and triglycerides, and a proatherogenic serum lipoprotein profile. FXR/BAR null mice also had reduced bile acid pools and reduced fecal bile acid excretion due to decreased expression of the major hepatic canalicular bile acid transport protein. Bile acid repression and induction of cholesterol 7alpha-hydroxylase and the ileal bile acid binding protein, respectively, did not occur in FXR/BAR null mice, establishing the regulatory role of FXR/BAR for the expression of these genes in vivo. These data demonstrate that FXR/BAR is critical for bile acid and lipid homeostasis by virtue of its role as an intracellular bile acid sensor.

                Author and article information

                Mol Metab
                Mol Metab
                Molecular Metabolism
                14 June 2016
                September 2016
                14 June 2016
                : 5
                : 9
                : 782-794
                [1 ]Immunology Department, Weizmann Institute of Science, 76100 Rehovot, Israel
                [2 ]Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
                [3 ]Department of Gastroenterology, Tel Aviv Medical Center, Tel Aviv 6423906, Israel
                Author notes
                []Corresponding author. eran.elinav@

                Stavros Bashiardes, Hagit Shapiro and Shachar Rozin contributed equally to this work.

                © 2016 The Authors

                This is an open access article under the CC BY-NC-ND license (

                Original Article

                liver, nafld, nash, microbiome


                Comment on this article