17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Of mice and mammoths: generality and antiquity of the island rule

      , , , , ,

      Journal of Biogeography

      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 39

          • Record: found
          • Abstract: not found
          • Article: not found

          Phylogenetic signal and linear regression on species data

           Liam Revell (2010)
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Body size evolution in insular vertebrates: generality of the island rule

             Mark Lomolino (2005)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Machine learning methods without tears: a primer for ecologists.

              Machine learning methods, a family of statistical techniques with origins in the field of artificial intelligence, are recognized as holding great promise for the advancement of understanding and prediction about ecological phenomena. These modeling techniques are flexible enough to handle complex problems with multiple interacting elements and typically outcompete traditional approaches (e.g., generalized linear models), making them ideal for modeling ecological systems. Despite their inherent advantages, a review of the literature reveals only a modest use of these approaches in ecology as compared to other disciplines. One potential explanation for this lack of interest is that machine learning techniques do not fall neatly into the class of statistical modeling approaches with which most ecologists are familiar. In this paper, we provide an introduction to three machine learning approaches that can be broadly used by ecologists: classification and regression trees, artificial neural networks, and evolutionary computation. For each approach, we provide a brief background to the methodology, give examples of its application in ecology, describe model development and implementation, discuss strengths and weaknesses, explore the availability of statistical software, and provide an illustrative example. Although the ecological application of machine learning approaches has increased, there remains considerable skepticism with respect to the role of these techniques in ecology. Our review encourages a greater understanding of machin learning approaches and promotes their future application and utilization, while also providing a basis from which ecologists can make informed decisions about whether to select or avoid these approaches in their future modeling endeavors.
                Bookmark

                Author and article information

                Journal
                Journal of Biogeography
                J. Biogeogr.
                Wiley-Blackwell
                03050270
                August 2013
                August 2013
                : 40
                : 8
                : 1427-1439
                Article
                10.1111/jbi.12096
                © 2013
                Product
                Self URI (article page): http://doi.wiley.com/10.1111/jbi.12096

                Comments

                Comment on this article