Blog
About

16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Neurons in the orbitofrontal cortex encode economic value.

      Nature

      Animals, Time Factors, physiology, cytology, Neurons, Models, Neurological, Humans, Haplorhini, Fruit, Frontal Lobe, Food Preferences, Diet, Cost-Benefit Analysis, Choice Behavior

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Economic choice is the behaviour observed when individuals select one among many available options. There is no intrinsically 'correct' answer: economic choice depends on subjective preferences. This behaviour is traditionally the object of economic analysis and is also of primary interest in psychology. However, the underlying mental processes and neuronal mechanisms are not well understood. Theories of human and animal choice have a cornerstone in the concept of 'value'. Consider, for example, a monkey offered one raisin versus one piece of apple: behavioural evidence suggests that the animal chooses by assigning values to the two options. But where and how values are represented in the brain is unclear. Here we show that, during economic choice, neurons in the orbitofrontal cortex (OFC) encode the value of offered and chosen goods. Notably, OFC neurons encode value independently of visuospatial factors and motor responses. If a monkey chooses between A and B, neurons in the OFC encode the value of the two goods independently of whether A is presented on the right and B on the left, or vice versa. This trait distinguishes the OFC from other brain areas in which value modulates activity related to sensory or motor processes. Our results have broad implications for possible psychological models, suggesting that economic choice is essentially choice between goods rather than choice between actions. In this framework, neurons in the OFC seem to be a good candidate network for value assignment underlying economic choice.

          Related collections

          Most cited references 21

          • Record: found
          • Abstract: found
          • Article: not found

          Abstract reward and punishment representations in the human orbitofrontal cortex.

          The orbitofrontal cortex (OFC) is implicated in emotion and emotion-related learning. Using event-related functional magnetic resonance imaging (fMRI), we measured brain activation in human subjects doing an emotion-related visual reversal-learning task in which choice of the correct stimulus led to a probabilistically determined 'monetary' reward and choice of the incorrect stimulus led to a monetary loss. Distinct areas of the OFC were activated by monetary rewards and punishments. Moreover, in these areas, we found a correlation between the magnitude of the brain activation and the magnitude of the rewards and punishments received. These findings indicate that one emotional involvement of the human orbitofrontal cortex is its representation of the magnitudes of abstract rewards and punishments, such as receiving or losing money.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neural correlates of decision variables in parietal cortex.

            Decision theory proposes that humans and animals decide what to do in a given situation by assessing the relative value of each possible response. This assessment can be computed, in part, from the probability that each action will result in a gain and the magnitude of the gain expected. Here we show that the gain (or reward) a monkey can expect to realize from an eye-movement response modulates the activity of neurons in the lateral intraparietal area, an area of primate cortex that is thought to transform visual signals into eye-movement commands. We also show that the activity of these neurons is sensitive to the probability that a particular response will result in a gain. When animals can choose freely between two alternative responses, the choices subjects make and neuronal activation in this area are both correlated with the relative amount of gain that the animal can expect from each response. Our data indicate that a decision-theoretic model may provide a powerful new framework for studying the neural processes that intervene between sensation and action.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Relative reward preference in primate orbitofrontal cortex.

              The orbital part of prefrontal cortex appears to be crucially involved in the motivational control of goal-directed behaviour. Patients with lesions of orbitofrontal cortex show impairments in making decisions about the expected outcome of actions. Monkeys with orbitofrontal lesions respond abnormally to changes in reward expectations and show altered reward preferences. As rewards constitute basic goals of behaviour, we investigated here how neurons in the orbitofrontal cortex of monkeys process information about liquid and food rewards in a typical frontal task, spatial delayed responding. The activity of orbitofrontal neurons increases in response to reward-predicting signals, during the expectation of rewards, and after the receipt of rewards. Neurons discriminate between different rewards, mainly irrespective of the spatial and visual features of reward-predicting stimuli and behavioural reactions. Most reward discriminations reflect the animals' relative preference among the available rewards, as expressed by their choice behaviour, rather than physical reward properties. Thus, neurons in the orbitofrontal cortex appear to process the motivational value of rewarding outcomes of voluntary action.
                Bookmark

                Author and article information

                Journal
                16633341
                10.1038/nature04676
                2630027

                Comments

                Comment on this article