20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Role of comorbidities in heart failure prognosis Part 2: Chronic kidney disease, elevated serum uric acid

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Despite improvements in pharmacotherapy, morbidity and mortality rates in community-based populations with chronic heart failure still remain high. The increase in medical complexity among patients with heart failure may be reflected by an increase in concomitant non-cardiovascular comorbidities, which are recognized as independent prognostic factors in this population. Heart failure and chronic kidney disease share many risk factors, and often coexist. The presence of kidney failure is associated with incremented risk of cardiovascular and non-cardiovascular mortality in heart failure patients. Chronic kidney disease is also linked with underutilization of evidence-based heart failure therapy that may reduce morbidity and mortality. More targeted therapies would be important to improve the prognosis of patients with these diseases. In recent years, serum uric acid as a determinant of cardiovascular risk has gained interest. Epidemiological, experimental and clinical data show that patients with hyperuricaemia are at increased risk of cardiac, renal and vascular damage and cardiovascular events. Moreover, elevated serum uric acid predicts worse outcome in both acute and chronic heart failure. While studies have raised the possibility of preventing heart failure through the use of uric acid lowering agents, the literature is still inconclusive on whether the reduction in uric acid will result in a measurable clinical benefit. Available evidences suggest that chronic kidney disease and elevated uric acid could worsen heart failure patients’ prognosis. The aim of this review is to analyse a possible utilization of these comorbidities in risk stratification and as a therapeutic target to get a prognostic improvement in heart failure patients.

          Related collections

          Most cited references95

          • Record: found
          • Abstract: found
          • Article: not found

          Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction

          In patients with type 2 diabetes, inhibitors of sodium-glucose cotransporter 2 (SGLT2) reduce the risk of a first hospitalization for heart failure, possibly through glucose-independent mechanisms. More data are needed regarding the effects of SGLT2 inhibitors in patients with established heart failure and a reduced ejection fraction, regardless of the presence or absence of type 2 diabetes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Epidemiology and risk profile of heart failure.

            Heart failure (HF) is a major public health issue, with a prevalence of over 5.8 million in the USA, and over 23 million worldwide, and rising. The lifetime risk of developing HF is one in five. Although promising evidence shows that the age-adjusted incidence of HF may have plateaued, HF still carries substantial morbidity and mortality, with 5-year mortality that rival those of many cancers. HF represents a considerable burden to the health-care system, responsible for costs of more than $39 billion annually in the USA alone, and high rates of hospitalizations, readmissions, and outpatient visits. HF is not a single entity, but a clinical syndrome that may have different characteristics depending on age, sex, race or ethnicity, left ventricular ejection fraction (LVEF) status, and HF etiology. Furthermore, pathophysiological differences are observed among patients diagnosed with HF and reduced LVEF compared with HF and preserved LVEF, which are beginning to be better appreciated in epidemiological studies. A number of risk factors, such as ischemic heart disease, hypertension, smoking, obesity, and diabetes, among others, have been identified that both predict the incidence of HF as well as its severity. In this Review, we discuss key features of the epidemiology and risk profile of HF.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis.

              Substantial controversy surrounds the use of estimated glomerular filtration rate (eGFR) and albuminuria to define chronic kidney disease and assign its stages. We undertook a meta-analysis to assess the independent and combined associations of eGFR and albuminuria with mortality. In this collaborative meta-analysis of general population cohorts, we pooled standardised data for all-cause and cardiovascular mortality from studies containing at least 1000 participants and baseline information about eGFR and urine albumin concentrations. Cox proportional hazards models were used to estimate hazard ratios (HRs) for all-cause and cardiovascular mortality associated with eGFR and albuminuria, adjusted for potential confounders. The analysis included 105,872 participants (730,577 person-years) from 14 studies with urine albumin-to-creatinine ratio (ACR) measurements and 1,128,310 participants (4,732,110 person-years) from seven studies with urine protein dipstick measurements. In studies with ACR measurements, risk of mortality was unrelated to eGFR between 75 mL/min/1.73 m(2) and 105 mL/min/1.73 m(2) and increased at lower eGFRs. Compared with eGFR 95 mL/min/1.73 m(2), adjusted HRs for all-cause mortality were 1.18 (95% CI 1.05-1.32) for eGFR 60 mL/min/1.73 m(2), 1.57 (1.39-1.78) for 45 mL/min/1.73 m(2), and 3.14 (2.39-4.13) for 15 mL/min/1.73 m(2). ACR was associated with risk of mortality linearly on the log-log scale without threshold effects. Compared with ACR 0.6 mg/mmol, adjusted HRs for all-cause mortality were 1.20 (1.15-1.26) for ACR 1.1 mg/mmol, 1.63 (1.50-1.77) for 3.4 mg/mmol, and 2.22 (1.97-2.51) for 33.9 mg/mmol. eGFR and ACR were multiplicatively associated with risk of mortality without evidence of interaction. Similar findings were recorded for cardiovascular mortality and in studies with dipstick measurements. eGFR less than 60 mL/min/1.73 m(2) and ACR 1.1 mg/mmol (10 mg/g) or more are independent predictors of mortality risk in the general population. This study provides quantitative data for use of both kidney measures for risk assessment and definition and staging of chronic kidney disease. Kidney Disease: Improving Global Outcomes (KDIGO), US National Kidney Foundation, and Dutch Kidney Foundation. Copyright 2010 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Eur J Prev Cardiol
                Eur J Prev Cardiol
                CPR
                spcpr
                European Journal of Preventive Cardiology
                SAGE Publications (Sage UK: London, England )
                2047-4873
                2047-4881
                26 November 2020
                December 2020
                : 27
                : 2 Suppl , Cardiopulmonary exercise testing in clinical practice. The Mecki Score initiative Supplement
                : 35-45
                Affiliations
                [1 ]Cardiology Dept, Guglielmo da Saliceto Hospital, AUSL Piacenza and University of Parma, Italy
                [2 ]Clinical Cardiology and Rehabilitation Unit, Università degli Studi di Milano, Centro Cardiologico Monzino IRCCS, Italy
                [3 ]Centro Cardiologico di Veruno, Istituti Clinici Maugeri, Italy
                [4 ]Istituti Clinici Scientifici Maugeri-SPA SB. I.R.C.C.S. Institute of Bari, Italy
                Author notes
                [*]Andrea Tedeschi, Department of Cardiology, Parma University Hospital, Viale Antonio Gramsci, 14, 43126 Parma, Italy. Email: andrea.tedeschimd@ 123456gmail.com
                Article
                10.1177_2047487320957793
                10.1177/2047487320957793
                7691631
                33238740
                95c24605-f9cf-4b5b-ac2f-96187f498d1e
                © The European Society of Cardiology 2020

                This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License ( https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages ( https://us.sagepub.com/en-us/nam/open-access-at-sage).

                History
                : 8 July 2020
                : 18 August 2020
                Categories
                Full Research Papers
                Custom metadata
                ts2

                heart failure,comorbidities,kidney,uric acid,prognosis,risk stratification

                Comments

                Comment on this article