23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Coeliac disease: a unique model for investigating broken tolerance in autoimmunity

      review-article
      1 , 2 , 1 , 2 , 3 , 4 , *
      Clinical & Translational Immunology
      Nature Publishing Group

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Coeliac disease, a prevalent immune-mediated enteropathy driven by dietary gluten, provides an exceptional human model to dissect the genetic, environmental and immunologic factors operating in autoimmunity. Despite the causative antigen being an exogenous food protein, coeliac disease has many features in common with autoimmune disease including a strong HLA class II association and the presence of pathogenic CD4 + T cells and autoantibodies. CD8 + intraepithelial lymphocytes specifically target and destroy intestinal epithelium in response to stress signals and not a specific antigen. A unique feature of coeliac disease is the ability to remove gluten to induce disease remission and reintroduce it to trigger a memory response. This provides an unparalleled opportunity to study disease-relevant CD4 + T cells that have been expanded in vivo. As a result, the causative peptides have been characterised at a level unprecedented for any autoimmune disease. Despite the complexity of the gluten proteome, resistance to gastrointestinal proteolysis and susceptibility to post-translational modification by transglutaminase help shape a restricted repertoire of immunogenic gluten peptides that have high affinity for disease-associated HLA. The critical steps in coeliac disease pathogenesis have been broadly elucidated and provide the basis for experimental therapies in pre-clinical or clinical development. However, little is known about how and why tolerance to gluten sometimes breaks or fails to develop. Understanding the interactions between genes, the environment, gluten immunity and the microbiome may provide novel approaches for the prevention and treatment of disease.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: not found

          Shared and distinct genetic variants in type 1 diabetes and celiac disease.

          Two inflammatory disorders, type 1 diabetes and celiac disease, cosegregate in populations, suggesting a common genetic origin. Since both diseases are associated with the HLA class II genes on chromosome 6p21, we tested whether non-HLA loci are shared. We evaluated the association between type 1 diabetes and eight loci related to the risk of celiac disease by genotyping and statistical analyses of DNA samples from 8064 patients with type 1 diabetes, 9339 control subjects, and 2828 families providing 3064 parent-child trios (consisting of an affected child and both biologic parents). We also investigated 18 loci associated with type 1 diabetes in 2560 patients with celiac disease and 9339 control subjects. Three celiac disease loci--RGS1 on chromosome 1q31, IL18RAP on chromosome 2q12, and TAGAP on chromosome 6q25--were associated with type 1 diabetes (P<1.00x10(-4)). The 32-bp insertion-deletion variant on chromosome 3p21 was newly identified as a type 1 diabetes locus (P=1.81x10(-8)) and was also associated with celiac disease, along with PTPN2 on chromosome 18p11 and CTLA4 on chromosome 2q33, bringing the total number of loci with evidence of a shared association to seven, including SH2B3 on chromosome 12q24. The effects of the IL18RAP and TAGAP alleles confer protection in type 1 diabetes and susceptibility in celiac disease. Loci with distinct effects in the two diseases included INS on chromosome 11p15, IL2RA on chromosome 10p15, and PTPN22 on chromosome 1p13 in type 1 diabetes and IL12A on 3q25 and LPP on 3q28 in celiac disease. A genetic susceptibility to both type 1 diabetes and celiac disease shares common alleles. These data suggest that common biologic mechanisms, such as autoimmunity-related tissue damage and intolerance to dietary antigens, may be etiologic features of both diseases. 2008 Massachusetts Medical Society
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Coordinated induction by IL15 of a TCR-independent NKG2D signaling pathway converts CTL into lymphokine-activated killer cells in celiac disease.

            A major function of NKG2D linking innate and adaptive immunity is to upregulate antigen-specific CTL-mediated cytotoxicity in tissues expressing stress-induced NKG2D ligands, such as MIC, by coactivating TCR signaling. Here, we show that, under conditions of dysregulated IL15 expression in vivo in patients with celiac disease and in vitro in healthy individuals, multiple steps of the NKG2D/DAP10 signaling pathway leading to ERK and JNK activation are coordinately primed to activate direct cytolytic function independent of TCR specificity in effector CD8 T cells. These findings may not only explain previous reports of transformation of CTL into NK-like "lymphokine-activated killers" (LAK cells) under high doses of IL2 (a substitute for IL15) but may also have significant implications for understanding and treating immunopathological diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Newly identified genetic risk variants for celiac disease related to the immune response.

              Our genome-wide association study of celiac disease previously identified risk variants in the IL2-IL21 region. To identify additional risk variants, we genotyped 1,020 of the most strongly associated non-HLA markers in an additional 1,643 cases and 3,406 controls. Through joint analysis including the genome-wide association study data (767 cases, 1,422 controls), we identified seven previously unknown risk regions (P < 5 x 10(-7)). Six regions harbor genes controlling immune responses, including CCR3, IL12A, IL18RAP, RGS1, SH2B3 (nsSNP rs3184504) and TAGAP. Whole-blood IL18RAP mRNA expression correlated with IL18RAP genotype. Type 1 diabetes and celiac disease share HLA-DQ, IL2-IL21, CCR3 and SH2B3 risk regions. Thus, this extensive genome-wide association follow-up study has identified additional celiac disease risk variants in relevant biological pathways.
                Bookmark

                Author and article information

                Journal
                Clin Transl Immunology
                Clin Transl Immunology
                Clinical & Translational Immunology
                Nature Publishing Group
                2050-0068
                November 2016
                02 November 2016
                1 November 2016
                : 5
                : 11
                : e112
                Affiliations
                [1 ]Immunology Division, The Walter and Eliza Hall Institute of Medical Research , Parkville, Victoria, Australia
                [2 ]Department of Medical Biology, The University of Melbourne , Parkville, Victoria, Australia
                [3 ]Centre of Food and Allergy Research, Murdoch Children's Research Institute , Parkville, Victoria, Australia
                [4 ]Department of Gastroenterology, The Royal Melbourne Hospital , Parkville, Victoria, Australia
                Author notes
                [* ]Immunology Division, The Walter and Eliza Hall Institute of Medical Research , 1G Royal Parade, Parkville, Victoria 3052, Australia. E-mail: tyedin@ 123456wehi.edu.au
                Author information
                http://orcid.org/0000-0001-7687-9654
                Article
                cti201658
                10.1038/cti.2016.58
                5133362
                95cc0d4b-55e3-43d1-a912-699e3ef10c27
                Copyright © 2016 The Author(s)

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/

                History
                : 15 June 2016
                : 12 September 2016
                : 12 September 2016
                Categories
                Review

                Comments

                Comment on this article