28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      G protein-coupled receptor kinase 5 mediates Tazarotene-induced gene 1-induced growth suppression of human colon cancer cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Tazarotene-induced gene 1 (TIG1) is a retinoid-inducible type II tumour suppressor gene. The B isoform of TIG1 (TIG1B) inhibits growth and invasion of cancer cells. Expression of TIG1B is frequently downregulated in various cancer tissues; however, the expression and activities of the TIG1A isoform are yet to be reported. Therefore, this study investigated the effects of the TIG1A and TIG1B isoforms on cell growth and gene expression profiles using colon cancer cells.

          Methods

          TIG1A and TIG1B stable clones derived from HCT116 and SW620 colon cancer cells were established using the GeneSwitch system; TIG1 isoform expression was induced by mifepristone treatment. Cell growth was assessed using the WST-1 cell proliferation and colony formation assays. RNA interference was used to examine the TIG1 mediating changes in cell growth. Gene expression profiles were determined using microarray and validated using real-time polymerase chain reaction, and Western blot analyses.

          Results

          Both TIG1 isoforms were expressed at high levels in normal prostate and colon tissues and were downregulated in colon cancer cell lines. Both TIG1 isoforms significantly inhibited the growth of transiently transfected HCT116 cells and stably expressing TIG1A and TIG1B HCT116 and SW620 cells. Expression of 129 and 55 genes was altered upon induction of TIG1A and TIG1B expression, respectively, in stably expressing HCT116 cells. Of the genes analysed, 23 and 6 genes were upregulated and downregulated, respectively, in both TIG1A and TIG1B expressing cells. Upregulation of the G-protein-coupled receptor kinase 5 (GRK5) was confirmed using real-time polymerase chain reaction and Western blot analyses in both TIG1 stable cell lines. Silencing of TIG1A or GRK5 expression significantly decreased TIG1A-mediated cell growth suppression.

          Conclusions

          Expression of both TIG1 isoforms was observed in normal prostate and colon tissues and was downregulated in colon cancer cell lines. Both TIG1 isoforms suppressed cell growth and stimulated GRK5 expression in HCT116 and SW620 cells. Knockdown of GRK5 expression alleviated TIG1A-induced growth suppression of HCT116 cells, suggesting that GRK5 mediates cell growth suppression by TIG1A. Thus, TIG1 may participate in the downregulation of G-protein coupled signaling by upregulating GRK5 expression.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Uncovering G protein-coupled receptor kinase-5 as a histone deacetylase kinase in the nucleus of cardiomyocytes.

          G protein-coupled receptor (GPCR) kinases (GRKs) are critical regulators of cellular signaling and function. In cardiomyocytes, GRK2 and GRK5 are two GRKs important for myocardial regulation, and both have been shown to be up-regulated in the dysfunctional heart. We report that increased levels and activity of GRK5 in failing myocardium may have unique significance due to its nuclear localization, a property not shared by GRK2. We find that transgenic mice with elevated cardiac GRK5 levels have exaggerated hypertrophy and early heart failure compared with control mice after pressure overload. This pathology is not present in cardiac GRK2-overexpressing mice or in mice with overexpression of a mutant GRK5 that is excluded from the nucleus. Nuclear accumulation of GRK5 is enhanced in myocytes after aortic banding in vivo and in vitro in myocytes after increased G alpha q activity, the trigger for pressure-overload hypertrophy. GRK5 enhances activation of MEF2 in concert with Gq signals, demonstrating that nuclear localized GRK5 regulates gene transcription via a pathway critically linked to myocardial hypertrophy. Mechanistically, we show that this is due to GRK5 acting, in a non-GPCR manner, as a class II histone deacetylase (HDAC) kinase because it can associate with and phosphorylate the myocyte enhancer factor-2 repressor, HDAC5. Moreover, significant HDAC activity can be found with GRK5 in the heart. Our data show that GRK5 is a nuclear HDAC kinase that plays a key role in maladaptive cardiac hypertrophy apparently independent of any action directly on GPCRs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The G-protein-coupled receptor kinase 5 inhibits NFkappaB transcriptional activity by inducing nuclear accumulation of IkappaB alpha.

            G-protein-coupled receptor (GPCR) kinases, GRKs, are known as serine/threonine kinases that regulate GPCR signaling, but recent findings propose functions for these kinases besides receptor desensitization. Indeed, GRK5 can translocate to the nucleus by means of a nuclear localization sequence, suggesting that this kinase regulates transcription events in the nucleus. To evaluate the effect of GRK5-IkappaB alpha interaction on NFkappaB signaling, we induced the overexpression and the knockdown of GRK5 in cell cultures. GRK5 overexpression causes nuclear accumulation of IkappaB alpha, leading to the inhibition of NFkappaB transcriptional activity. Opposite results are achieved by GRK5 knockdown through siRNA. A physical interaction between GRK5 and IkappaB alpha, rather than phosphorylative events, appears as the underlying mechanism. We identify the regulator of gene protein signaling homology domain of GRK5 (RH) and the N-terminal domain of IkappaB alpha as the regions involved in such interaction. To confirm the biological relevance of this mechanism of regulation for NFkappaB, we evaluated the effects of GRK5-RH on NFkappaB-dependent phenotypes. In particular, GRK5-RH overexpression impairs apoptosis protection and cytokine production in vitro and inflammation and tissue regeneration in vivo. Our results reveal an unexpected role for GRK5 in the regulation of NFkappaB transcription activity. Placing these findings in perspective, this mechanism may represent a therapeutic target for all those conditions involving excessive NFkappaB activity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The quantitative trait gene latexin influences the size of the hematopoietic stem cell population in mice.

              We mapped quantitative trait loci that accounted for the variation in hematopoietic stem cell (HSC) numbers between young adult C57BL/6 (B6) and DBA/2 (D2) mice. In reciprocal chromosome 3 congenic mice, introgressed D2 alleles increased HSC numbers owing to enhanced proliferation and self-renewal and reduced apoptosis, whereas B6 alleles had the opposite effects. Using oligonucleotide arrays, real-time PCR and protein blots, we identified latexin (Lxn), a gene whose differential transcription and expression was associated with the allelic differences. Expression was inversely correlated with the number of HSCs; therefore, ectopic expression of Lxn using a retroviral vector decreased stem cell population size. We identified clusters of SNPs upstream of the Lxn transcriptional start site, at least two of which are associated with potential binding sites for transcription factors regulating stem cells. Thus, promoter polymorphisms between the B6 and D2 alleles may affect Lxn gene expression and consequently influence the population size of hematopoietic stem cells.
                Bookmark

                Author and article information

                Journal
                BMC Cancer
                BMC Cancer
                BioMed Central
                1471-2407
                2011
                17 May 2011
                : 11
                : 175
                Affiliations
                [1 ]Department of Surgery, Tri-Service General Hospital, 325 Chengung Rd, Sec 2, Taipei, 114 Taiwan
                [2 ]Department of Research, Buddhist Tzu Chi General Hospital Taipei Branch, 289 Jianguo Rd, Sindian District, New Taipei City, 231 Taiwan
                [3 ]Department of Internal Medicine, Buddhist Tzu Chi General Hospital Taipei Branch, 289 Jianguo Rd, Sindian District, New Taipei City, 231 Taiwan
                [4 ]School of Medicine, Tzu Chi University, 701 Zhongyang Rd, Sec 3, Hualien, 970 Taiwan
                [5 ]Department of Dermatology, Buddhist Tzu Chi General Hospital Taipei Branch, 289 Jianguo Rd, Sindian District, New Taipei City, 231 Taiwan
                Article
                1471-2407-11-175
                10.1186/1471-2407-11-175
                3112162
                21575264
                95ce89b7-ea4e-4f02-ab9b-9db0dd966c19
                Copyright ©2011 Wu et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 22 February 2011
                : 17 May 2011
                Categories
                Research Article

                Oncology & Radiotherapy
                grk5,microarray,tumour suppressor,tig1,rarres1,colon cancer cells
                Oncology & Radiotherapy
                grk5, microarray, tumour suppressor, tig1, rarres1, colon cancer cells

                Comments

                Comment on this article