Blog
About

90
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Aiming drug discovery at lysophosphatidic acid targets

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lysophosphatidic acid (LPA, 1-radyl-2-hydroxy- sn-glycero-3-phosphate) is the prototype member of a family of lipid mediators and second messengers. LPA and its naturally occurring analogues interact with G protein-coupled receptors on the cell surface and a nuclear hormone receptor within the cell. In addition, there are several enzymes that utilize LPA as a substrate or generate it as a product and are under its regulatory control. LPA is present in biological fluids, and attempts have been made to link changes in its concentration and molecular composition to specific disease conditions. Through their many targets, members of the LPA family regulate cell survival, apoptosis, motility, shape, differentiation, gene transcription, malignant transformation and more. The present review depicts arbitrary aspects of the physiological and pathophysiological actions of LPA and attempts to link them with select targets. Many of us are now convinced that therapies targeting LPA biosynthesis and signalling are feasible for the treatment of devastating human diseases such as cancer, fibrosis and degenerative conditions. However, successful targeting of the pathways associated with this pleiotropic lipid will depend on the future development of as yet undeveloped pharmacons.

          Related collections

          Most cited references 309

          • Record: found
          • Abstract: found
          • Article: not found

          Efficient selection for high-expression transfectants with a novel eukaryotic vector.

          We have developed a new expression vector which allows efficient selection for transfectants that express foreign genes at high levels. The vector is composed of a ubiquitously strong promoter based on the beta-actin promoter, a 69% subregion of the bovine papilloma virus genome, and a mutant neomycin phosphotransferase II-encoding gene driven by a weak promoter, which confers only marginal resistance to G418. Thus, high concentrations of G418 (approx. 800 micrograms/ml) effectively select for transfectants containing a high vector copy number (greater than 300). We tested this system by producing human interleukin-2 (IL-2) in L cells and Chinese hamster ovary (CHO) cells, and the results showed that high concentrations of G418 efficiently yielded L cell and CHO cell transfectants stably producing IL-2 at levels comparable with those previously attained using gene amplification. The vector sequences were found to have integrated into the host chromosome, and were stably maintained in the transfectants for several months.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma).

            Thiazolidinedione derivatives are antidiabetic agents that increase the insulin sensitivity of target tissues in animal models of non-insulin-dependent diabetes mellitus. In vitro, thiazolidinediones promote adipocyte differentiation of preadipocyte and mesenchymal stem cell lines; however, the molecular basis for this adipogenic effect has remained unclear. Here, we report that thiazolidinediones are potent and selective activators of peroxisome proliferator-activated receptor gamma (PPAR gamma), a member of the nuclear receptor superfamily recently shown to function in adipogenesis. The most potent of these agents, BRL49653, binds to PPAR gamma with a Kd of approximately 40 nM. Treatment of pluripotent C3H10T1/2 stem cells with BRL49653 results in efficient differentiation to adipocytes. These data are the first demonstration of a high affinity PPAR ligand and provide strong evidence that PPAR gamma is a molecular target for the adipogenic effects of thiazolidinediones. Furthermore, these data raise the intriguing possibility that PPAR gamma is a target for the therapeutic actions of this class of compounds.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors.

              Actin stress fibers are one of the major cytoskeletal structures in fibroblasts and are linked to the plasma membrane at focal adhesions. rho, a ras-related GTP-binding protein, rapidly stimulated stress fiber and focal adhesion formation when microinjected into serum-starved Swiss 3T3 cells. Readdition of serum produced a similar response, detectable within 2 min. This activity was due to a lysophospholipid, most likely lysophosphatidic acid, bound to serum albumin. Other growth factors including PDGF induced actin reorganization initially to form membrane ruffles, and later, after 5 to 10 min, stress fibers. For all growth factors tested the stimulation of focal adhesion and stress fiber assembly was inhibited when endogenous rho function was blocked, whereas membrane ruffling was unaffected. These data imply that rho is essential specifically for the coordinated assembly of focal adhesions and stress fibers induced by growth factors.
                Bookmark

                Author and article information

                Journal
                Br J Pharmacol
                bph
                British Journal of Pharmacology
                Blackwell Publishing Ltd
                0007-1188
                1476-5381
                September 2010
                : 161
                : 2
                : 241-270
                Affiliations
                simpleDepartment of Physiology, University of Tennessee Health Science Center Memphis, TN, USA
                Author notes
                Correspondence Gabor Tigyi, Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Memphis, TN 38163, USA. E-mail: gtigyi@ 123456uthsc.edu

                Re-use of this article is permitted in accordance with the Terms and Conditions set out at http://www3.interscience.wiley.com/authorresources/onlineopen.html

                Article
                10.1111/j.1476-5381.2010.00815.x
                2989581
                20735414
                Copyright © 2010 The British Pharmacological Society
                Categories
                Reviews

                Comments

                Comment on this article