7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Evolution of adaptive phenotypic variation patterns by direct selection for evolvability.

      Proceedings of the Royal Society B: Biological Sciences
      Animals, Biological Evolution, Computer Simulation, Genetic Variation, Mice, Models, Genetic, Phenotype, Quantitative Trait Loci, Quantitative Trait, Heritable, Selection, Genetic

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A basic assumption of the Darwinian theory of evolution is that heritable variation arises randomly. In this context, randomness means that mutations arise irrespective of the current adaptive needs imposed by the environment. It is broadly accepted, however, that phenotypic variation is not uniformly distributed among phenotypic traits, some traits tend to covary, while others vary independently, and again others barely vary at all. Furthermore, it is well established that patterns of trait variation differ among species. Specifically, traits that serve different functions tend to be less correlated, as for instance forelimbs and hind limbs in bats and humans, compared with the limbs of quadrupedal mammals. Recently, a novel class of genetic elements has been identified in mouse gene-mapping studies that modify correlations among quantitative traits. These loci are called relationship loci, or relationship Quantitative Trait Loci (rQTL), and affect trait correlations by changing the expression of the existing genetic variation through gene interaction. Here, we present a population genetic model of how natural selection acts on rQTL. Contrary to the usual neo-Darwinian theory, in this model, new heritable phenotypic variation is produced along the selected dimension in response to directional selection. The results predict that selection on rQTL leads to higher correlations among traits that are simultaneously under directional selection. On the other hand, traits that are not simultaneously under directional selection are predicted to evolve lower correlations. These results and the previously demonstrated existence of rQTL variation, show a mechanism by which natural selection can directly enhance the evolvability of complex organisms along lines of adaptive change.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: not found
          • Article: not found

          The Measurement of Selection on Correlated Characters

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Spontaneous evolution of modularity and network motifs.

            Biological networks have an inherent simplicity: they are modular with a design that can be separated into units that perform almost independently. Furthermore, they show reuse of recurring patterns termed network motifs. Little is known about the evolutionary origin of these properties. Current models of biological evolution typically produce networks that are highly nonmodular and lack understandable motifs. Here, we suggest a possible explanation for the origin of modularity and network motifs in biology. We use standard evolutionary algorithms to evolve networks. A key feature in this study is evolution under an environment (evolutionary goal) that changes in a modular fashion. That is, we repeatedly switch between several goals, each made of a different combination of subgoals. We find that such "modularly varying goals" lead to the spontaneous evolution of modular network structure and network motifs. The resulting networks rapidly evolve to satisfy each of the different goals. Such switching between related goals may represent biological evolution in a changing environment that requires different combinations of a set of basic biological functions. The present study may shed light on the evolutionary forces that promote structural simplicity in biological networks and offers ways to improve the evolutionary design of engineered systems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The frailty of adaptive hypotheses for the origins of organismal complexity.

              M. Lynch (2007)
              The vast majority of biologists engaged in evolutionary studies interpret virtually every aspect of biodiversity in adaptive terms. This narrow view of evolution has become untenable in light of recent observations from genomic sequencing and population-genetic theory. Numerous aspects of genomic architecture, gene structure, and developmental pathways are difficult to explain without invoking the nonadaptive forces of genetic drift and mutation. In addition, emergent biological features such as complexity, modularity, and evolvability, all of which are current targets of considerable speculation, may be nothing more than indirect by-products of processes operating at lower levels of organization. These issues are examined in the context of the view that the origins of many aspects of biological diversity, from gene-structural embellishments to novelties at the phenotypic level, have roots in nonadaptive processes, with the population-genetic environment imposing strong directionality on the paths that are open to evolutionary exploitation.
                Bookmark

                Author and article information

                Journal
                21106581
                3097830
                10.1098/rspb.2010.2113

                Chemistry
                Animals,Biological Evolution,Computer Simulation,Genetic Variation,Mice,Models, Genetic,Phenotype,Quantitative Trait Loci,Quantitative Trait, Heritable,Selection, Genetic

                Comments

                Comment on this article