37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The P2X7 Receptor-Interleukin-1 Liaison

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Interleukin-1β (IL-1β) plays a central role in stimulation of innate immune system and inflammation and in several chronic inflammatory diseases. These include rare hereditary conditions, e.g., auto-inflammatory syndromes, as well as common pathologies, such as type II diabetes, gout and atherosclerosis. A better understanding of IL-1β synthesis and release is particularly relevant for the design of novel anti-inflammatory drugs. One of the molecules mainly involved in IL-1β maturation is the P2X7 receptor (P2X7R), an ATP-gated ion channel that chiefly acts through the recruitment of the NLRP3 inflammasome-caspase-1 complex. In this review, we will summarize evidence supporting the key role of the P2X7R in IL-1β production, with special emphasis on the mechanism of release, a process that is still a matter of controversy. Four different models have been proposed: (i) exocytosis via secretory lysosomes, (ii) microvesicles shedding from plasma membrane, (iii) release of exosomes, and (iv) passive efflux across a leaky plasma membrane during pyroptotic cell death. All these models involve the P2X7R.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: not found

          A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes.

          Interleukin-1 beta (IL-1 beta)-converting enzyme cleaves the IL-1 beta precursor to mature IL-1 beta, an important mediator of inflammation. The identification of the enzyme as a unique cysteine protease and the design of potent peptide aldehyde inhibitors are described. Purification and cloning of the complementary DNA indicates that IL-1 beta-converting enzyme is composed of two nonidentical subunits that are derived from a single proenzyme, possibly by autoproteolysis. Selective inhibition of the enzyme in human blood monocytes blocks production of mature IL-1 beta, indicating that it is a potential therapeutic target.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nucleotide signalling during inflammation.

            Inflammatory conditions are associated with the extracellular release of nucleotides, particularly ATP. In the extracellular compartment, ATP predominantly functions as a signalling molecule through the activation of purinergic P2 receptors. Metabotropic P2Y receptors are G-protein-coupled, whereas ionotropic P2X receptors are ATP-gated ion channels. Here we discuss how signalling events through P2 receptors alter the outcomes of inflammatory or infectious diseases. Recent studies implicate a role for P2X/P2Y signalling in mounting appropriate inflammatory responses critical for host defence against invading pathogens or tumours. Conversely, P2X/P2Y signalling can promote chronic inflammation during ischaemia and reperfusion injury, inflammatory bowel disease or acute and chronic diseases of the lungs. Although nucleotide signalling has been used clinically in patients before, research indicates an expanding field of opportunities for specifically targeting individual P2 receptors for the treatment of inflammatory or infectious diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Purinergic regulation of the immune system.

              Cellular stress or apoptosis triggers the release of ATP, ADP and other nucleotides into the extracellular space. Extracellular nucleotides function as autocrine and paracrine signalling molecules by activating cell-surface P2 purinergic receptors that elicit pro-inflammatory immune responses. Over time, extracellular nucleotides are metabolized to adenosine, leading to reduced P2 signalling and increased signalling through anti-inflammatory adenosine (P1 purinergic) receptors. Here, we review how local purinergic signalling changes over time during tissue responses to injury or disease, and we discuss the potential of targeting purinergic signalling pathways for the immunotherapeutic treatment of ischaemia, organ transplantation, autoimmunity or cancer.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Pharmacol
                Front Pharmacol
                Front. Pharmacol.
                Frontiers in Pharmacology
                Frontiers Media S.A.
                1663-9812
                16 March 2017
                2017
                : 8
                : 123
                Affiliations
                [1]Department of Morphology, Surgery and Experimental Medicine, University of Ferrara Ferrara, Italy
                Author notes

                Edited by: Francesca Oliviero, University of Padua, Italy

                Reviewed by: Robson Coutinho-Silva, Federal University of Rio de Janeiro, Brazil; Tobias Engel, Royal College of Surgeons in Ireland, Ireland

                *Correspondence: Francesco Di Virgilio, fdv@ 123456unife.it

                This article was submitted to Inflammation Pharmacology, a section of the journal Frontiers in Pharmacology

                Article
                10.3389/fphar.2017.00123
                5353276
                28360855
                95ff2450-3a46-43f8-984f-7d81e55a480e
                Copyright © 2017 Giuliani, Sarti, Falzoni and Di Virgilio.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 13 January 2017
                : 28 February 2017
                Page count
                Figures: 2, Tables: 0, Equations: 0, References: 124, Pages: 10, Words: 0
                Funding
                Funded by: Associazione Italiana per la Ricerca sul Cancro 10.13039/501100005010
                Funded by: Ministero della Salute 10.13039/501100003196
                Funded by: Università degli Studi di Ferrara 10.13039/501100007109
                Categories
                Pharmacology
                Review

                Pharmacology & Pharmaceutical medicine
                interleukin-1β,p2x7 receptor,nlrp3 inflammasome,caspase-1,inflammation

                Comments

                Comment on this article