9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Assessment of bias in morphological identification of carnivore scats confirmed with molecular scatology in north-eastern Himalayan region of Pakistan

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Scats are often used to study ecological parameters of carnivore species. However, field identification of carnivore scats, based on their morphological characteristics, becomes difficult if many carnivore species are distributed in the same area. We assessed error rates in morphological identification of five sympatric carnivores’ scats in north-eastern Himalayan region of Pakistan during 2013–2017. A sample of 149 scats were subjected to molecular identification using fecal DNA. We used a confusion matrix to assess different types of errors associated with carnivore scat identification. We were able to amplify DNA from 96.6% ( n = 144) of scats. Based on field identification of carnivore scats, we had predicted that out of 144 scats: 11 (7.6%) scats were from common leopard, 38 (26.4%) from red fox, 29 (20.1%) from Asiatic jackal, 37 (25.7%) from yellow throated martin, 14 (9.7%) from Asian palm civet and 15 (10.4%) from small Indian civet. However, molecular identification revealed and confirmed nine were scats (6.24%) from common leopard, 40 (27.8 %) from red fox, 21 (14.6%) from Asiatic jackal, 45 (31.25%) from Asian palm civet, 12 (8.3%) scats from small Indian civet, while 11 scats (7.6%) were found from Canis lupus Spp., three (2%) from dog, one (0.7 %) scat sample from porcupine, and two (1.4%) from rhesus monkey. Misidentification rate was highest for Asian palm civet (25.7%), followed by red fox (11.1%) and Asiatic jackal (9.7%) but least for common leopard scats (4.2%). The results specific to our study area concur with previous studies that have recommended that carnivore monitoring programs utilize molecular identification of predator scats. Using only morphological identification of scats can be misleading and may result in wrong management decisions.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          ecoPrimers: inference of new DNA barcode markers from whole genome sequence analysis

          Using non-conventional markers, DNA metabarcoding allows biodiversity assessment from complex substrates. In this article, we present ecoPrimers, a software for identifying new barcode markers and their associated PCR primers. ecoPrimers scans whole genomes to find such markers without a priori knowledge. ecoPrimers optimizes two quality indices measuring taxonomical range and discrimination to select the most efficient markers from a set of reference sequences, according to specific experimental constraints such as marker length or specifically targeted taxa. The key step of the algorithm is the identification of conserved regions among reference sequences for anchoring primers. We propose an efficient algorithm based on data mining, that allows the analysis of huge sets of sequences. We evaluate the efficiency of ecoPrimers by running it on three different sequence sets: mitochondrial, chloroplast and bacterial genomes. Identified barcode markers correspond either to barcode regions already in use for plants or animals, or to new potential barcodes. Results from empirical experiments carried out on a promising new barcode for analyzing vertebrate diversity fully agree with expectations based on bioinformatics analysis. These tests demonstrate the efficiency of ecoPrimers for inferring new barcodes fitting with diverse experimental contexts. ecoPrimers is available as an open source project at: http://www.grenoble.prabi.fr/trac/ecoPrimers.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            NONINVASIVE GENETIC SAMPLING TOOLS FOR WILDLIFE BIOLOGISTS: A REVIEW OF APPLICATIONS AND RECOMMENDATIONS FOR ACCURATE DATA COLLECTION

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Facts from feces revisited.

              Obtaining information on wild mammal populations has been a long-standing logistical problem. However, an array of non-invasive techniques is available, including recently developed molecular genetic techniques for the analysis of feces (molecular scatology). A battery of non-invasive, molecular approaches can be used on feces, which in conjunction with conventional analysis are potentially useful for assesing genetic structure, demography and life history of mammals. Several technical problems reman before large-scale studies of feces can be undertaken productively, but already studies are providing insight into population subdivision, food habits, reproduction, sex ratio and parasitology of free-ranging populations.
                Bookmark

                Author and article information

                Contributors
                Journal
                PeerJ
                PeerJ
                PeerJ
                PeerJ
                PeerJ
                PeerJ Inc. (San Francisco, USA )
                2167-8359
                16 July 2018
                2018
                : 6
                : e5262
                Affiliations
                [1 ]Department of Wildlife Management, University of Arid Agriculture , Rawalpindi, Pakistan
                [2 ]College of Forestry and Conservation, University of Montana , Missoula, MT, USA
                [3 ]Department of Zoology, University of Arid Agriculture , Rawalpindi, Pakistan
                Author information
                http://orcid.org/0000-0001-9313-0637
                http://orcid.org/0000-0002-2432-7732
                http://orcid.org/0000-0003-2198-0047
                Article
                5262
                10.7717/peerj.5262
                6052849
                96046ada-4048-428d-bc6e-c8e65e39f820
                © 2018 Akrim et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.

                History
                : 20 April 2018
                : 28 June 2018
                Funding
                Funded by: Higher Education Commission Pakistan
                This work was supported by Higher Education Commission Pakistan. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Conservation Biology
                Ecology
                Zoology

                scats,morphological identification,molecular identification,misidentification

                Comments

                Comment on this article