7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Evidence of both ontogeny and transplant dose-regulated expansion of hematopoietic stem cells in vivo.

      Blood
      Animals, Antigens, Ly, genetics, Biological Markers, Bone Marrow Transplantation, Cell Count, Feedback, Female, Fetal Tissue Transplantation, Genes, Reporter, Genetic Vectors, isolation & purification, Graft Survival, Hematopoiesis, Hematopoietic Stem Cell Transplantation, Hematopoietic Stem Cells, cytology, Humans, Liver, embryology, Male, Mice, Mice, Inbred C3H, Mice, Inbred C57BL, Proviruses, Radiation Chimera, Retroviridae

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent assessment of the long-term repopulating activity of defined subsets of hematopoietic cells has offered new insights into the characteristics of the transplantable stem cells of this system; however, as yet, there is very little known about mechanisms that regulate their self-renewal in vivo. We have now exploited the ability to quantitate these cells using the competitive repopulating unit (CRU) assay to identify the role of both intrinsic (ontological) and extrinsic (transplanted dose-related) variables that may contribute to the regulation of CRU recovery in vivo. Ly5.1 donor cells derived from day-14.5 fetal liver (FL) or the bone marrow (BM) of adult mice injected 4 days previously with 5-fluorouracil were transplanted at doses estimated to contain 10, 100, or 1,000 long-term CRU into irradiated congenic Ly5.2 adult recipient mice. Eight to 12 months after transplantation, there was a complete recovery of BM cellularity and in vitro clonogenic progenitor numbers and a nearly full recovery of day-12 colony-forming unit-spleen numbers irrespective of the number or origin of cells initially transplanted. In contrast, regeneration of Ly5.1+ donor-derived CRU was incomplete in all cases and was dependent on both the origin and dose of the transplant, with FL being markedly superior to that of adult BM. As a result, the final recovery of the adult marrow CRU compartment ranged from 15% to 62% and from 1% to 18% of the normal value in recipients of FL and adult BM transplantation, respectively, with an accompanying maximum CRU amplification of 150-fold for recipients of FL cells and 15-fold for recipients of adult BM cells. Interestingly, the extent of CRU expansion from either source was inversely related to the number of CRU transplanted. These data suggest that recovery of mature blood cell production in vivo may activate negative feedback regulatory mechanisms to prematurely limit stem cell self-renewal ability. Proviral integration analysis of mice receiving retrovirally transduced BM cells confirmed regeneration of totipotent lymphomyeloid repopulating cells and provided evidence for a greater than 300-fold clonal amplification of a single transduced stem cell. These results highlight the differential regenerative capacities of CRU from fetal and adult sources that likely reflect intrinsic, genetically defined determinants of CRU expansion but whose contribution to the magnitude of stem cell amplification ultimately obtained in vivo is also strongly influenced by the initial number of CRU transplanted. Such findings set the stage for attempts to enhance CRU regeneration by administration of agents that may enable full expression of regenerative potential or through the expression of intracellular gene products that may alter intrinsic regenerative capacity.

          Related collections

          Author and article information

          Comments

          Comment on this article