19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Intracellular Aggregation of Polypeptides with Expanded Polyglutamine Domain Is Stimulated by Stress-Activated Kinase Mekk1

      research-article

      Read this article at

      ScienceOpenPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abnormal proteins, which escape chaperone-mediated refolding or proteasome-dependent degradation, aggregate and form inclusion bodies (IBs). In several neurodegenerative diseases, such IBs can be formed by proteins with expanded polyglutamine (polyQ) domains (e.g., huntingtin). This work studies the regulation of intracellular IB formation using an NH 2-terminal fragment of huntingtin with expanded polyQ domain. We demonstrate that the active form of MEKK1, a protein kinase that regulates several stress-activated signaling cascades, stimulates formation of the IBs. This function of MEKK1 requires kinase activity, as the kinase-dead mutant of MEKK1 cannot stimulate this process. Exposure of cells to UV irradiation or cisplatin, both of which activate MEKK1, also augmented the formation of IBs. The polyQ-containing huntingtin fragment exists in cells in two distinct forms: (a) in a discrete soluble complex, and (b) in association with insoluble fraction. MEKK1 strongly stimulated recruitment of polyQ polypeptides into the particulate fraction. Notably, a large portion of the active form of MEKK1 was associated with the insoluble fraction, concentrating in discrete sites, and polyQ-containing IBs always colocalized with them. We suggest that MEKK1 is involved in a process of IB nucleation. MEKK1 also stimulated formation of IBs with two abnormal polypeptides lacking the polyQ domain, indicating that this kinase has a general effect on protein aggregation.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Aggresomes: A Cellular Response to Misfolded Proteins

          Intracellular deposition of misfolded protein aggregates into ubiquitin-rich cytoplasmic inclusions is linked to the pathogenesis of many diseases. Why these aggregates form despite the existence of cellular machinery to recognize and degrade misfolded protein and how they are delivered to cytoplasmic inclusions are not known. We have investigated the intracellular fate of cystic fibrosis transmembrane conductance regulator (CFTR), an inefficiently folded integral membrane protein which is degraded by the cytoplasmic ubiquitin-proteasome pathway. Overexpression or inhibition of proteasome activity in transfected human embryonic kidney or Chinese hamster ovary cells led to the accumulation of stable, high molecular weight, detergent-insoluble, multiubiquitinated forms of CFTR. Using immunofluorescence and transmission electron microscopy with immunogold labeling, we demonstrate that undegraded CFTR molecules accumulate at a distinct pericentriolar structure which we have termed the aggresome. Aggresome formation is accompanied by redistribution of the intermediate filament protein vimentin to form a cage surrounding a pericentriolar core of aggregated, ubiquitinated protein. Disruption of microtubules blocks the formation of aggresomes. Similarly, inhibition of proteasome function also prevented the degradation of unassembled presenilin-1 molecules leading to their aggregation and deposition in aggresomes. These data lead us to propose that aggresome formation is a general response of cells which occurs when the capacity of the proteasome is exceeded by the production of aggregation-prone misfolded proteins.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Huntington's disease protein interacts with p53 and CREB-binding protein and represses transcription.

            Huntington's Disease (HD) is caused by an expansion of a polyglutamine tract within the huntingtin (htt) protein. Pathogenesis in HD appears to include the cytoplasmic cleavage of htt and release of an amino-terminal fragment capable of nuclear localization. We have investigated potential consequences to nuclear function of a pathogenic amino-terminal region of htt (httex1p) including aggregation, protein-protein interactions, and transcription. httex1p was found to coaggregate with p53 in inclusions generated in cell culture and to interact with p53 in vitro and in cell culture. Expanded httex1p represses transcription of the p53-regulated promoters, p21(WAF1/CIP1) and MDR-1. httex1p was also found to interact in vitro with CREB-binding protein (CBP) and mSin3a, and CBP to localize to neuronal intranuclear inclusions in a transgenic mouse model of HD. These results raise the possibility that expanded repeat htt causes aberrant transcriptional regulation through its interaction with cellular transcription factors which may result in neuronal dysfunction and cell death in HD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions.

              The mechanisms by which mutant huntingtin induces neurodegeneration were investigated using a cellular model that recapitulates features of neurodegeneration seen in Huntington's disease. When transfected into cultured striatal neurons, mutant huntingtin induces neurodegeneration by an apoptotic mechanism. Antiapoptotic compounds or neurotrophic factors protected neurons against mutant huntingtin. Blocking nuclear localization of mutant huntingtin suppressed its ability to form intranuclear inclusions and to induce neurodegeneration. However, the presence of inclusions did not correlate with huntingtin-induced death. The exposure of mutant huntingtin-transfected striatal neurons to conditions that suppress the formation of inclusions resulted in an increase in mutant huntingtin-induced death. These findings suggest that mutant huntingtin acts within the nucleus to induce neurodegeneration. However, intranuclear inclusions may reflect a cellular mechanism to protect against huntingtin-induced cell death.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Cell Biol
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                14 May 2001
                : 153
                : 4
                : 851-864
                Affiliations
                [a ]Boston Biomedical Research Institute, Watertown, Massachusetts 02472
                [b ]Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
                Article
                0009027
                2192371
                11352944
                9619d3ca-2d5c-422b-9813-fb4504787e64
                © 2001 The Rockefeller University Press
                History
                : 7 September 2000
                : 30 March 2001
                : 30 March 2001
                Categories
                Original Article

                Cell biology
                polyglutamine,inclusion body,mekk1,protein aggregation,stress
                Cell biology
                polyglutamine, inclusion body, mekk1, protein aggregation, stress

                Comments

                Comment on this article