+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Long Non-Coding RNA in the Pathogenesis of Cancers

      1 , 1 , 2 , 3 , 1 , 2 , 3 , *
      lncRNAs, cancer, proliferation, metastasis

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          The incidence and mortality rate of cancer has been quickly increasing in the past decades. At present, cancer has become the leading cause of death worldwide. Most of the cancers cannot be effectively diagnosed at the early stage. Although there are multiple therapeutic treatments, including surgery, radiotherapy, chemotherapy, and targeted drugs, their effectiveness is still limited. The overall survival rate of malignant cancers is still low. It is necessary to further study the mechanisms for malignant cancers, and explore new biomarkers and targets that are more sensitive and effective for early diagnosis, treatment, and prognosis of cancers than traditional biomarkers and methods. Long non-coding RNAs (lncRNAs) are a class of RNA transcripts with a length greater than 200 nucleotides. Generally, lncRNAs are not capable of encoding proteins or peptides. LncRNAs exert diverse biological functions by regulating gene expressions and functions at transcriptional, translational, and post-translational levels. In the past decade, it has been demonstrated that the dysregulated lncRNA profile is widely involved in the pathogenesis of many diseases, including cancer, metabolic disorders, and cardiovascular diseases. In particular, lncRNAs have been revealed to play an important role in tumor growth and metastasis. Many lncRNAs have been shown to be potential biomarkers and targets for the diagnosis and treatment of cancers. This review aims to briefly discuss the latest findings regarding the roles and mechanisms of some important lncRNAs in the pathogenesis of certain malignant cancers, including lung, breast, liver, and colorectal cancers, as well as hematological malignancies and neuroblastoma.

          Related collections

          Most cited references289

          • Record: found
          • Abstract: found
          • Article: not found

          Transcriptional control of human p53-regulated genes.

          The p53 protein regulates the transcription of many different genes in response to a wide variety of stress signals. Following DNA damage, p53 regulates key processes, including DNA repair, cell-cycle arrest, senescence and apoptosis, in order to suppress cancer. This Analysis article provides an overview of the current knowledge of p53-regulated genes in these pathways and others, and the mechanisms of their regulation. In addition, we present the most comprehensive list so far of human p53-regulated genes and their experimentally validated, functional binding sites that confer p53 regulation.
            • Record: found
            • Abstract: found
            • Article: not found

            Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells.

            The conversion of lineage-committed cells to induced pluripotent stem cells (iPSCs) by reprogramming is accompanied by a global remodeling of the epigenome, resulting in altered patterns of gene expression. Here we characterize the transcriptional reorganization of large intergenic non-coding RNAs (lincRNAs) that occurs upon derivation of human iPSCs and identify numerous lincRNAs whose expression is linked to pluripotency. Among these, we defined ten lincRNAs whose expression was elevated in iPSCs compared with embryonic stem cells, suggesting that their activation may promote the emergence of iPSCs. Supporting this, our results indicate that these lincRNAs are direct targets of key pluripotency transcription factors. Using loss-of-function and gain-of-function approaches, we found that one such lincRNA (lincRNA-RoR) modulates reprogramming, thus providing a first demonstration for critical functions of lincRNAs in the derivation of pluripotent stem cells.
              • Record: found
              • Abstract: found
              • Article: not found

              Whole-genome mutational landscape and characterization of noncoding and structural mutations in liver cancer.

              Liver cancer, which is most often associated with virus infection, is prevalent worldwide, and its underlying etiology and genomic structure are heterogeneous. Here we provide a whole-genome landscape of somatic alterations in 300 liver cancers from Japanese individuals. Our comprehensive analysis identified point mutations, structural variations (STVs), and virus integrations, in noncoding and coding regions. We discovered mutational signatures related to liver carcinogenesis and recurrently mutated coding and noncoding regions, such as long intergenic noncoding RNA genes (NEAT1 and MALAT1), promoters, CTCF-binding sites, and regulatory regions. STV analysis found a significant association with replication timing and identified known (CDKN2A, CCND1, APC, and TERT) and new (ASH1L, NCOR1, and MACROD2) cancer-related genes that were recurrently affected by STVs, leading to altered expression. These results emphasize the value of whole-genome sequencing analysis in discovering cancer driver mutations and understanding comprehensive molecular profiles of liver cancer, especially with regard to STVs and noncoding mutations.

                Author and article information

                01 September 2019
                September 2019
                : 8
                : 9
                : 1015
                [1 ]Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People’s Hospital, Beijing 100044, China
                [2 ]Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
                [3 ]Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Beijing 100191, China
                Author notes
                [* ]Correspondence: yangj@ 123456bjmu.edu.cn ; Tel.: +86-10-8280-1403

                These authors contributed equally to this work.

                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                : 08 July 2019
                : 29 August 2019

                lncrnas, cancer, proliferation, metastasis


                Comment on this article