6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Amyloid of Rnq1p, the basis of the [PIN+] prion, has a parallel in-register beta-sheet structure.

      Proceedings of the National Academy of Sciences of the United States of America
      Amyloid, chemistry, ultrastructure, Microscopy, Electron, Transmission, Models, Molecular, Nuclear Magnetic Resonance, Biomolecular, Prions, Protein Structure, Secondary, Saccharomyces cerevisiae, Saccharomyces cerevisiae Proteins, Time Factors, X-Ray Diffraction

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The [PIN(+)] prion, a self-propagating amyloid form of Rnq1p, increases the frequency with which the [PSI(+)] or [URE3] prions arise de novo. Like the prion domains of Sup35p and Ure2p, Rnq1p is rich in N and Q residues, but rnq1Delta strains have no known phenotype except for inability to propagate the [PIN(+)] prion. We used solid-state NMR methods to examine amyloid formed in vitro from recombinant Rnq1 prion domain (residues 153-405) labeled with Tyr-1-(13)C (14 residues), Leu-1-(13)C (7 residues), or Ala-3-(13)C (13 residues). The carbonyl chemical shifts indicate that most Tyr and Leu residues are in beta-sheet conformation. Experiments designed to measure the distance from each labeled residue to the next nearest labeled carbonyl showed that almost all Tyr and Leu carbonyl carbon atoms were approximately 0.5 nm from the next nearest Tyr and Leu residues, respectively. This result indicates that the Rnq1 prion domain forms amyloid consisting of parallel beta-strands that are either in register or are at most one amino acid out of register. Similar experiments with Ala-3-(13)C indicate that the beta-strands are indeed in-register. The parallel in-register structure, now demonstrated for each of the yeast prions, explains the faithful templating of prion strains, and suggests as well a mechanism for the rare hetero-priming that is [PIN(+)]'s defining characteristic.

          Related collections

          Author and article information

          Comments

          Comment on this article