88
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Metabolic and Performance Effects of Caffeine Compared to Coffee during Endurance Exercise

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There is consistent evidence supporting the ergogenic effects of caffeine for endurance based exercise. However, whether caffeine ingested through coffee has the same effects is still subject to debate. The primary aim of the study was to investigate the performance enhancing effects of caffeine and coffee using a time trial performance test, while also investigating the metabolic effects of caffeine and coffee. In a single-blind, crossover, randomised counter-balanced study design, eight trained male cyclists/triathletes (Mean±SD: Age 41±7y, Height 1.80±0.04 m, Weight 78.9±4.1 kg, VO 2 max 58±3 ml•kg −1•min −1) completed 30 min of steady-state (SS) cycling at approximately 55% VO 2max followed by a 45 min energy based target time trial (TT). One hour prior to exercise each athlete consumed drinks consisting of caffeine (5 mg CAF/kg BW), instant coffee (5 mg CAF/kg BW), instant decaffeinated coffee or placebo. The set workloads produced similar relative exercise intensities during the SS for all drinks, with no observed difference in carbohydrate or fat oxidation. Performance times during the TT were significantly faster (∼5.0%) for both caffeine and coffee when compared to placebo and decaf (38.35±1.53, 38.27±1.80, 40.23±1.98, 40.31±1.22 min respectively, p<0.05). The significantly faster performance times were similar for both caffeine and coffee. Average power for caffeine and coffee during the TT was significantly greater when compared to placebo and decaf (294±21 W, 291±22 W, 277±14 W, 276±23 W respectively, p<0.05). No significant differences were observed between placebo and decaf during the TT. The present study illustrates that both caffeine (5 mg/kg/BW) and coffee (5 mg/kg/BW) consumed 1 h prior to exercise can improve endurance exercise performance.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Effects of caffeine ingestion on rating of perceived exertion during and after exercise: a meta-analysis.

          The purpose of this study was to use the meta-analytic approach to examine the effects of caffeine ingestion on ratings of perceived exertion (RPE). Twenty-one studies with 109 effect sizes (ESs) met the inclusion criteria. Coding incorporated RPE scores obtained both during constant load exercise (n=89) and upon termination of exhausting exercise (n=20). In addition, when reported, the exercise performance ES was also computed (n=16). In comparison to placebo, caffeine reduced RPE during exercise by 5.6% (95% CI (confidence interval), -4.5% to -6.7%), with an equivalent RPE ES of -0.47 (95% CI, -0.35 to -0.59). These values were significantly greater (P<0.05) than RPE obtained at the end of exercise (RPE % change, 0.01%; 95% CI, -1.9 to 2.0%; RPE ES, 0.00, 95% CI, -0.17 to 0.17). In addition, caffeine improved exercise performance by 11.2% (95% CI; 4.6-17.8%). Regression analysis revealed that RPE obtained during exercise could account for approximately 29% of the variance in the improvement in exercise performance. The results demonstrate that caffeine reduces RPE during exercise and this may partly explain the subsequent ergogenic effects of caffeine on performance.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Metabolic, catecholamine, and exercise performance responses to various doses of caffeine.

            This study examined the exercise responses of well-trained endurance athletes to various doses of caffeine to evaluate the impact of the drug on exercise metabolism and endurance capacity. Subjects (n = 8) withdrew from all dietary sources of caffeine for 48 h before each of four tests. One hour before exercise they ingested capsules of placebo or caffeine (3, 6, or 9 mg/kg), rested quietly, and then ran at 85% of maximal O2 consumption to voluntary exhaustion. Blood samples for methylxanthine, catecholamine, glucose, lactate, free fatty acid, and glycerol analyses were taken every 15 min. Plasma caffeine concentration increased with each dose (P < 0.05). Its major metabolite, paraxanthine, did not increase between the 6 and 9 mg/kg doses, suggesting that hepatic caffeine metabolism was saturated. Endurance was enhanced with both 3 and 6 mg/kg of caffeine (increases of 22 +/- 9 and 22 +/- 7%, respectively; both P < 0.05) over the placebo time of 49.4 +/- 4.2 min, whereas there was no significant effect with 9 mg/kg of caffeine. In contrast, plasma epinephrine was not increased with 3 mg/kg of caffeine but was greater with the higher doses (P < 0.05). Similarly only the highest dose of caffeine resulted in increases in glycerol and free fatty acids (P < 0.05). Thus the highest dose had the greatest effect on epinephrine and blood-borne metabolites yet had the least effect on performance. The lowest dose had little or no effect on epinephrine and metabolites but did have an ergogenic effect. These results are not compatible with the traditional theory that caffeine mediates its ergogenic effect via enhanced catecholamines.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effect of caffeine on sport-specific endurance performance: a systematic review.

              Endurance athletes often ingest caffeine because of its reported ergogenic properties. Although there are a vast number of studies quantifying caffeine's effects, many research studies measure endurance performance using a time-to-exhaustion test (subjects exercise at a fixed intensity to volitional exhaustion). Time-to-exhaustion as a performance measure is not ideal because of the high degree of measurement variability between and within subjects. Also, we are unaware of any endurance sports in which individuals win by going a longer distance or for a longer amount of time than their competitors. Measuring performance with a time-trial test (set distance or time with best effort) has high reproducibility and is more applicable to sport. Therefore, the purpose of this review was to critically and objectively evaluate studies that have examined the effect of caffeine on time-trial endurance (>5 minutes) performance. A literature search revealed 21 studies with a total of 33 identifiable caffeine treatments that measured endurance performance with a time-trial component. Each study was objectively analyzed with the Physiotherapy Evidence Database (PEDro) scale. The mean PEDro rating was 9.3 out of 10, indicating a high quality of research in this topic area. The mean improvement in performance with caffeine ingestion was 3.2 +/- 4.3%; however, this improvement was highly variable between studies (-0.3 to 17.3%). The high degree of variability may be dependent on a number of factors including ingestion timing, ingestion mode/vehicle, and subject habituation. Further research should seek to identify individual factors that mediate the large range of improvements observed with caffeine ingestion. In conclusion, caffeine ingestion can be an effective ergogenic aid for endurance athletes when taken before and/or during exercise in moderate quantities (3-6 mg.kg body mass). Abstaining from caffeine at least 7 days before use will give the greatest chance of optimizing the ergogenic effect.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                3 April 2013
                : 8
                : 4
                : e59561
                Affiliations
                [1 ]Human Performance Laboratory, School of Sport and Exercise Science, University Of Birmingham, Birmingham, United Kingdom
                [2 ]Gatorade Sport Science Institute, PepsiCo, Barrington, Illinois, United States of America
                University of Bath, United Kingdom
                Author notes

                Competing Interests: AEJ is employed by Pepsi Co. There are no patents, products in development or marketed products to declare. This does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials, as detailed online in the guide for authors.

                Critically reviewed the paper: ABH RKR AEJ. Conceived and designed the experiments: ABH RKR AEJ. Performed the experiments: ABH RKR. Analyzed the data: ABH AEJ. Wrote the paper: ABH AEJ.

                Article
                PONE-D-12-37710
                10.1371/journal.pone.0059561
                3616086
                23573201
                963d3de8-a1b7-46bb-b409-aeb7ababe23e
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 26 November 2012
                : 15 February 2013
                Page count
                Pages: 10
                Funding
                The authors have no funding or support to report.
                Categories
                Research Article
                Biology
                Anatomy and Physiology
                Physiological Processes
                Energy Metabolism
                Biochemistry
                Lipids
                Lipid Metabolism
                Metabolism
                Carbohydrate Metabolism
                Medicine
                Anatomy and Physiology
                Musculoskeletal System
                Muscle
                Physiological Processes
                Energy Metabolism
                Nutrition
                Sports and Exercise Medicine

                Uncategorized
                Uncategorized

                Comments

                Comment on this article