95
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      NK cell activation in visceral leishmaniasis requires TLR9, myeloid DCs, and IL-12, but is independent of plasmacytoid DCs

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Natural killer (NK) cells are sentinel components of the innate response to pathogens, but the cell types, pathogen recognition receptors, and cytokines required for their activation in vivo are poorly defined. Here, we investigated the role of plasmacytoid dendritic cells (pDCs), myeloid DCs (mDCs), Toll-like receptors (TLRs), and of NK cell stimulatory cytokines for the induction of an NK cell response to the protozoan parasite Leishmania infantum. In vitro, pDCs did not endocytose Leishmania promastigotes but nevertheless released interferon (IFN)-α/β and interleukin (IL)-12 in a TLR9-dependent manner. mDCs rapidly internalized Leishmania and, in the presence of TLR9, produced IL-12, but not IFN-α/β. Depletion of pDCs did not impair the activation of NK cells in L. infantum–infected mice. In contrast, L. infantum–induced NK cell cytotoxicity and IFN-γ production were abolished in mDC-depleted mice. The same phenotype was observed in TLR9 −/− mice, which lacked IL-12 expression by mDCs, and in IL-12 −/− mice, whereas IFN-α/β receptor −/− mice showed only a minor reduction of NK cell IFN-γ expression. This study provides the first direct evidence that mDCs are essential for eliciting NK cell cytotoxicity and IFN-γ release in vivo and demonstrates that TLR9, mDCs, and IL-12 are functionally linked to the activation of NK cells in visceral leishmaniasis.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA.

          Interferons (IFNs) are critical for protection from viral infection, but the pathways linking virus recognition to IFN induction remain poorly understood. Plasmacytoid dendritic cells produce vast amounts of IFN-alpha in response to the wild-type influenza virus. Here, we show that this requires endosomal recognition of influenza genomic RNA and signaling by means of Toll-like receptor 7 (TLR7) and MyD88. Single-stranded RNA (ssRNA) molecules of nonviral origin also induce TLR7-dependent production of inflammatory cytokines. These results identify ssRNA as a ligand for TLR7 and suggest that cells of the innate immune system sense endosomal ssRNA to detect infection by RNA viruses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function.

            MyD88, originally isolated as a myeloid differentiation primary response gene, is shown to act as an adaptor in interleukin-1 (IL-1) signaling by interacting with both the IL-1 receptor complex and IL-1 receptor-associated kinase (IRAK). Mice generated by gene targeting to lack MyD88 have defects in T cell proliferation as well as induction of acute phase proteins and cytokines in response to IL-1. Increases in interferon-gamma production and natural killer cell activity in response to IL-18 are abrogated. In vivo Th1 response is also impaired. Furthermore, IL-18-induced activation of NF-kappaB and c-Jun N-terminal kinase (JNK) is blocked in MyD88-/- Th1-developing cells. Taken together, these results demonstrate that MyD88 is a critical component in the signaling cascade that is mediated by IL-1 receptor as well as IL-18 receptor.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens.

              Cytotoxic T lymphocytes (CTL) respond to antigenic peptides presented on MHC class I molecules. On most cells, these peptides are exclusively of endogenous, cytosolic origin. Bone marrow-derived antigen-presenting cells, however, harbor a unique pathway for MHC I presentation of exogenous antigens. This mechanism permits cross-presentation of pathogen-infected cells and the priming of CTL responses against intracellular microbial infections. Here, we report a novel diphtheria toxin-based system that allows the inducible, short-term ablation of dendritic cells (DC) in vivo. We show that in vivo DC are required to cross-prime CTL precursors. Our results thus define a unique in vivo role of DC, i.e., the sensitization of the immune system for cell-associated antigens. DC-depleted mice fail to mount CTL responses to infection with the intracellular bacterium Listeria monocytogenes and the rodent malaria parasite Plasmodium yoelii.
                Bookmark

                Author and article information

                Journal
                J Exp Med
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                16 April 2007
                : 204
                : 4
                : 893-906
                Affiliations
                [1 ]Institute of Medical Microbiology and Hygiene, University of Freiburg, D-79104 Freiburg, Germany
                [2 ]Institute of Clinical Microbiology, Immunology and Hygiene, University of Erlangen, 91054 Erlangen, Germany
                [3 ]Institute of Medical Microbiology, Immunology and Hygiene, Technical University of Munich, 81675 München, Germany
                [4 ]Department of Research and Development, Miltenyi Biotec GmbH, 51429 Bergisch-Gladbach, Germany
                [5 ]Department of Molecular Immunology, Helmholtz Zentrum für Infektionsforschung, D-38124 Braunschweig, Germany
                [6 ]Department of Immunology, Paul Ehrlich Institute, 63225 Langen, Germany
                Author notes

                CORRESPONDENCE Christian Bogdan: christian.bogdan@ 123456uniklinik-freiburg.de

                Article
                20061293
                10.1084/jem.20061293
                2118560
                17389237
                96469632-132f-4453-8a36-f0d63b22174d
                Copyright © 2007, The Rockefeller University Press
                History
                : 19 June 2006
                : 2 March 2007
                Categories
                Articles
                Article

                Medicine
                Medicine

                Comments

                Comment on this article