18
views
0
recommends
+1 Recommend
0 collections
    8
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      BK channel activation by brief depolarizations requires Ca2+ influx through L- and Q-type Ca2+ channels in rat chromaffin cells.

      Journal of Neurophysiology
      Action Potentials, physiology, Animals, Calcium, metabolism, Calcium Channels, Calcium Channels, L-Type, Calcium Channels, N-Type, Cells, Cultured, Chromaffin Cells, Electric Conductivity, Electrophysiology, Potassium Channels, Rats, Rats, Sprague-Dawley

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          BK channel activation by brief depolarizations requires Ca2+ influx through L- and Q-type Ca2+ channels in rat chromaffin cells. Ca2+- and voltage-dependent BK-type K+ channels contribute to action potential repolarization in rat adrenal chromaffin cells. Here we characterize the Ca2+ currents expressed in these cells and identify the Ca2+ channel subtypes that gate the activation of BK channels during Ca2+ influx. Selective Ca2+ channel antagonists indicate the presence of at least four types of high-voltage-gated Ca2+ channels: L-, N-, P, and Q type. Mean amplitudes of the L-, N-, P-, and Q-type Ca2+ currents were 33, 21, 12, and 24% of the total Ca2+ current, respectively. Five-millisecond Ca2+ influx steps to 0 mV were employed to assay the contribution of Ca2+ influx through these Ca2+ channels to the activation of BK current. Blockade of L-type Ca2+ channels by 5 microM nifedipine or Q-type Ca2+ channels by 2 microM Aga IVA reduced BK current activation by 77 and 42%, respectively. In contrast, blockade of N-type Ca2+ channels by brief applications of 1-2 microM CnTC MVIIC or P-type Ca2+ channels by 50-100 nM Aga IVA reduced BK current activation by only 11 and 12%, respectively. Selective blockade of L- and Q-type Ca2+ channels also eliminated activation of BK current during action potentials, whereas almost no effects were seen by the selective blockade of N- or P-type Ca2+ channels. Finally, the L-type Ca2+ channel agonist Bay K 8644 promoted activation of BK current by brief Ca2+ influx steps by more than twofold. These data show that, despite the presence of at least four types of Ca2+ channels in rat chromaffin cells, BK channel activation in rat chromaffin cells is predominantly coupled to Ca2+ influx through L- and Q-type Ca2+ channels.

          Related collections

          Author and article information

          Comments

          Comment on this article