7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Characterization of a Prophage-Free Derivative Strain of Lactococcus lactis ssp. lactis IL1403 Reveals the Importance of Prophages for Phenotypic Plasticity of the Host

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lactococcus lactis is a lactic acid bacterium of major importance for the dairy industry and for human health. Recent sequencing surveys of this species have provided evidence that all lactococcal genomes contain prophages and prophage-like elements. The prophage-related sequences encompass up to 10% of the bacterial chromosomes and thus contribute significantly to the genetic diversity of lactococci. However, the impact of these resident prophages on the physiology of L. lactis is presently unknown. The genome of the first sequenced prototype strain, L. lactis ssp. lactis IL1403, contains six prophage-like elements which together represent 6.7% of the IL1403 chromosome. Diverse prophage genes other than those encoding phage repressors have been shown to be expressed in lysogenic conditions, suggesting that prophage genes are indeed able to modulate the physiology of their host. To elucidate the effect of resident prophages on the behavior of L. lactis in different growth conditions, we constructed and characterized, for the first time, a derivative strain of IL1403 that is prophage-free. This strain provides unique experimental opportunities for the study of different aspects of lactococcal physiology using the well-defined genetic background of IL1403. Here, we show that resident prophages modify the growth and survival of the host strain to a considerable extent in different conditions, including in the gastrointestinal environment. They also may affect cellular autolytic properties and the host cells’ susceptibility to virulent bacteriophages and antimicrobial agents. It thus appears that prophages contribute significantly to lactococcal cell physiology and might play an important role in the adaptation of L. lactis to cultivation and environmental conditions.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: not found
          • Article: not found

          Lactic acid bacteria as functional starter cultures for the food fermentation industry

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Lysogeny in nature: mechanisms, impact and ecology of temperate phages.

            Viruses that infect bacteria (phages) can influence bacterial community dynamics, bacterial genome evolution and ecosystem biogeochemistry. These influences differ depending on whether phages establish lytic, chronic or lysogenic infections. Although the first two produce virion progeny, with lytic infections resulting in cell destruction, phages undergoing lysogenic infections replicate with cells without producing virions. The impacts of lysogeny are numerous and well-studied at the cellular level, but ecosystem-level consequences remain underexplored compared to those of lytic infections. Here, we review lysogeny from molecular mechanisms to ecological patterns to emerging approaches of investigation. Our goal is to highlight both its diversity and importance in complex communities. Altogether, using a combined viral ecology toolkit that is applied across broad model systems and environments will help us understand more of the diverse lifestyles and ecological impacts of lysogens in nature.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pervasive domestication of defective prophages by bacteria.

              Integrated phages (prophages) are major contributors to the diversity of bacterial gene repertoires. Domestication of their components is thought to have endowed bacteria with molecular systems involved in secretion, defense, warfare, and gene transfer. However, the rates and mechanisms of domestication remain unknown. We used comparative genomics to study the evolution of prophages within the bacterial genome. We identified over 300 vertically inherited prophages within enterobacterial genomes. Some of these elements are very old and might predate the split between Escherichia coli and Salmonella enterica. The size distribution of prophage elements is bimodal, suggestive of rapid prophage inactivation followed by much slower genetic degradation. Accordingly, we observed a pervasive pattern of systematic counterselection of nonsynonymous mutations in prophage genes. Importantly, such patterns of purifying selection are observed not only on accessory regions but also in core phage genes, such as those encoding structural and lysis components. This suggests that bacterial hosts select for phage-associated functions. Several of these conserved prophages have gene repertoires compatible with described functions of adaptive prophage-derived elements such as bacteriocins, killer particles, gene transfer agents, or satellite prophages. We suggest that bacteria frequently domesticate their prophages. Most such domesticated elements end up deleted from the bacterial genome because they are replaced by analogous functions carried by new prophages. This puts the bacterial genome in a state of continuous flux of acquisition and loss of phage-derived adaptive genes.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                31 August 2018
                2018
                : 9
                : 2032
                Affiliations
                MICALIS Institute, INRA, AgroParisTech, Université Paris-Saclay , Jouy-en-Josas, France
                Author notes

                Edited by: Aleš Berlec, Jožef Stefan Institute (IJS), Slovenia

                Reviewed by: Chad W. Euler, Hunter College (CUNY), United States; Douwe Van Sinderen, University College Cork, Ireland

                *Correspondence: Elena Bidnenko, elena.bidnenko@ 123456inra.fr

                This article was submitted to Infectious Diseases, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2018.02032
                6127208
                30233519
                9650c820-2b0d-43ed-a796-ff06bfc81d8e
                Copyright © 2018 Aucouturier, Chain, Langella and Bidnenko.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 21 May 2018
                : 13 August 2018
                Page count
                Figures: 7, Tables: 2, Equations: 0, References: 68, Pages: 16, Words: 0
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                lactococcus lactis il1403,prophages,prophage impact,prophage-cured strain,physiology of lactococcus lactis

                Comments

                Comment on this article