6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Population Pharmacokinetic Analysis of Delamanid in Patients with Pulmonary Multidrug-Resistant Tuberculosis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A population pharmacokinetic (PopPK) model of delamanid in patients with pulmonary multidrug-resistant tuberculosis (MDR-TB) was developed using data from four delamanid clinical trials. The final PopPK data set contained 20,483 plasma samples from 744 patients with MDR-TB receiving an optimized background regimen (OBR). Delamanid PK was adequately described for all observed dosing regimens and subpopulations by a two-compartment model with first-order elimination and absorption, an absorption lag time, and decreased relative bioavailability with increasing dose.

          ABSTRACT

          A population pharmacokinetic (PopPK) model of delamanid in patients with pulmonary multidrug-resistant tuberculosis (MDR-TB) was developed using data from four delamanid clinical trials. The final PopPK data set contained 20,483 plasma samples from 744 patients with MDR-TB receiving an optimized background regimen (OBR). Delamanid PK was adequately described for all observed dosing regimens and subpopulations by a two-compartment model with first-order elimination and absorption, an absorption lag time, and decreased relative bioavailability with increasing dose. Relative bioavailabilities of 200-mg and higher doses (250 and 300 mg) were 76% and 58% of a 100-mg dose, respectively. Relative bioavailability was 26% higher after evening doses than morning doses and 9% higher in outpatient settings than inpatient settings. The rate of absorption was higher, and lag time was shorter, following a morning dose than an evening dose. Relative bioavailabilities in patients in Northeast Asian and Southeast Asian regions were 53% and 40% higher, respectively, than in patients in non-Asian regions. Apparent clearance was higher (to the power of −0.892) in patients with hypoalbuminemia (albumin levels of <3.4 g/dl). Coadministration of efavirenz in patients with HIV increased delamanid clearance by 35%. Delamanid exposure was not affected by age (18 to 64 years), mild or moderate renal impairment, anti-TB antibiotic resistance status, HIV status, or markers of hepatic dysfunction or by concomitant administration of OBR, lamivudine, tenofovir, pyridoxine, CYP3A4 inhibitors and inducers, or antacids. Model evaluation suggested reasonable model fit and predictive power, indicating that the model should prove reliable to derive PK metrics for subsequent PK/PD analyses.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          The effects of hypoalbuminaemia on optimizing antibacterial dosing in critically ill patients.

          Low serum albumin levels are very common in critically ill patients, with reported incidences as high as 40-50%. This condition appears to be associated with alterations in the degree of protein binding of many highly protein-bound antibacterials, which lead to altered pharmacokinetics and pharmacodynamics, although this topic is infrequently considered in daily clinical practice. The effects of hypoalbuminaemia on pharmacokinetics are driven by the decrease in the extent of antibacterial bound to albumin, which increases the unbound fraction of the drug. Unlike the fraction bound to plasma proteins, the unbound fraction is the only fraction available for distribution and clearance from the plasma (central compartment). Hence, hypoalbuminaemia is likely to increase the apparent total volume of distribution (V(d)) and clearance (CL) of a drug, which would translate to lower antibacterial exposures that might compromise the attainment of pharmacodynamic targets, especially for time-dependent antibacterials. The effect of hypoalbuminaemia on unbound concentrations is also likely to have an important impact on pharmacodynamics, but there is very little information available on this area. The objectives of this review were to identify the original research papers that report variations in the highly protein-bound antibacterial pharmacokinetics (mainly V(d) and CL) in critically ill patients with hypoalbuminaemia and without renal failure, and subsequently to interpret the consequences for antibacterial dosing. All relevant articles that described the pharmacokinetics and/or pharmacodynamics of highly protein-bound antibacterials in critically ill patients with hypoalbuminaemia and conserved renal function were reviewed. We found that decreases in the protein binding of antibacterials in the presence of hypoalbuminaemia are frequently observed in critically ill patients. For example, the V(d) and CL of ceftriaxone (85-95% protein binding) in hypoalbuminaemic critically ill patients were increased 2-fold. A similar phenomenon was reported with ertapenem (85-95% protein binding), which led to failure to attain pharmacodynamic targets (40% time for which the concentration of unbound [free] antibacterial was maintained above the minimal inhibitory concentration [fT>MIC] of the bacteria throughout the dosing interval). The V(d) and CL of other highly protein-bound antibacterials such as teicoplanin, aztreonam, fusidic acid or daptomycin among others were significantly increased in critically ill patients with hypoalbuminaemia compared with healthy subjects. Increased antibacterial V(d) appeared to be the most significant pharmacokinetic effect of decreased albumin binding, together with increased CL. These pharmacokinetic changes may result in decreased achievement of pharmacodynamic targets especially for time-dependent antibacterials, resulting in sub-optimal treatment. The effects on concentration-dependent antibacterial pharmacodynamics are more controversial due to the lack of data on this topic. In conclusion, altered antibacterial-albumin binding in the presence of hypoalbuminaemia is likely to produce significant variations in the pharmacokinetics of many highly protein-bound antibacterials. Dose adjustments of these antibacterials in critically ill patients with hypoalbuminaemia should be regarded as another step for antibacterial dosing optimization. Moreover, some of the new antibacterials in development exhibit a high level of protein binding although hypoalbuminaemia is rarely considered in clinical trials in critically ill patients. Further research that defines dosing regimens that account for such altered pharmacokinetics is recommended.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Delamanid for multidrug-resistant pulmonary tuberculosis.

            Delamanid (OPC-67683), a nitro-dihydro-imidazooxazole derivative, is a new antituberculosis medication that inhibits mycolic acid synthesis and has shown potent in vitro and in vivo activity against drug-resistant strains of Mycobacterium tuberculosis. In this randomized, placebo-controlled, multinational clinical trial, we assigned 481 patients (nearly all of whom were negative for the human immunodeficiency virus) with pulmonary multidrug-resistant tuberculosis to receive delamanid, at a dose of 100 mg twice daily (161 patients) or 200 mg twice daily (160 patients), or placebo (160 patients) for 2 months in combination with a background drug regimen developed according to World Health Organization guidelines. Sputum cultures were assessed weekly with the use of both liquid broth and solid medium; sputum-culture conversion was defined as a series of five or more consecutive cultures that were negative for growth of M. tuberculosis. The primary efficacy end point was the proportion of patients with sputum-culture conversion in liquid broth medium at 2 months. Among patients who received a background drug regimen plus 100 mg of delamanid twice daily, 45.4% had sputum-culture conversion in liquid broth at 2 months, as compared with 29.6% of patients who received a background drug regimen plus placebo (P=0.008). Likewise, as compared with the placebo group, the group that received the background drug regimen plus 200 mg of delamanid twice daily had a higher proportion of patients with sputum-culture conversion (41.9%, P=0.04). The findings were similar with assessment of sputum-culture conversion in solid medium. Most adverse events were mild to moderate in severity and were evenly distributed across groups. Although no clinical events due to QT prolongation on electrocardiography were observed, QT prolongation was reported significantly more frequently in the groups that received delamanid. Delamanid was associated with an increase in sputum-culture conversion at 2 months among patients with multidrug-resistant tuberculosis. This finding suggests that delamanid could enhance treatment options for multidrug-resistant tuberculosis. (Funded by Otsuka Pharmaceutical Development and Commercialization; ClinicalTrials.gov number, NCT00685360.).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              OPC-67683, a Nitro-Dihydro-Imidazooxazole Derivative with Promising Action against Tuberculosis In Vitro and In Mice

              Introduction Tuberculosis (TB) is still a leading cause of death worldwide [1]. Almost a third of the world's population is infected with TB bacilli, and each year approximately 8 million people develop active TB and 2 million die as a result [2]. Today's TB treatment, which dates back to the 1970s, is long and burdensome, requiring at least 6 mo of multidrug chemotherapy, typically consisting of rifampicin (RFP), isoniazid (INH), ethambutol (EB), and pyrazinamide (PZA) given under clinically observed conditions. The situation is further complicated by the emergence of multidrug-resistant TB (MDR-TB) and by the infection's lethal synergy with HIV/AIDS [3–6]. Patients with MDR-TB must be treated with a combination containing second-line drugs that are less effective, more expensive, and more toxic. TB's lethal synergy with HIV/AIDS puts HIV-positive individuals with latent tubercle bacilli infection (LTBI) at a 30× to 50× greater risk of developing active TB, giving rise to TB as the number one killer among patients with AIDS [6]. The pharmaceutical industry, however, has generally shown little interest in developing new, more effective drugs to address these needs, and, as a result, no new anti-TB agent with a novel mechanism of action has been launched since the introduction of RFP in 1966. Consequently, global health and philanthropic organizations are now pleading for new chemotherapy interventions that can shorten the total duration of therapy, provide improved efficacy against MDR-TB, safely treat patients co-infected with HIV/AIDS, and target LTBI [6,7]. We initiated a program to screen for potent anti-TB agents that have a new structure and mechanism able to inhibit the biosynthesis of mycolic acid, and found nitro-dihydro-imidazooxazole derivatives to exhibit such activity. Nitro-heterocyclic compounds, including various 5- and 2-nitroimidazoles and 5-nitrofurans, are known to be effective against a variety of protozoan and bacterial infections in humans and animals [8]. These compounds, however, are also known to commonly possess mutagenicity. CGI-17341 (Figure 1), a nitroimidazooxazole derivative, has been reported to have anti-tubercular activity [9,10], but the compound was not developed because of its mutagenic properties. We focused our search on new nitro-dihydro-imidazooxazoles with anti-tubercular activity that had no mutagenicity by performing the bacterial reverse mutation (BRM) test [11]. About 95% of the compounds we screened earlier that had mono- or di-alkyl substituents at 2-position were mutagenic. However, after introducing heteroatoms to the substituent, we were able to successfully decrease the mutagenicity rate to 16%. Among the non-mutagenic derivatives, we found OPC-67683 to have potent anti-TB activity. We then further evaluated OPC-67683 to determine whether the compound could help address the unmet needs of TB treatment. Figure 1 Structure of CGI-17341, PA-824, and OPC-67683 OPC-67683: (R)-2-methyl-6-nitro-2-{4-[4-(4-trifluoromethoxyphenoxy)piperidin-1-yl]phenoxymethyl}-2,3-dihydroimidazo[2,1-b]oxazole. Methods Culture Medium Cultures of Mycobacterium tuberculosis and M. bovis BCG were grown in Middlebrook 7H9 broth (BBL, http://www.bd.com) and Middlebrook 7H11 agar medium (BBL), respectively. Both types of media were prepared according to the manufacturer's directions. Drug Preparation for In Vitro Studies OPC-67683, PA-824, and CGI-17341 were synthesized at Otsuka Pharmaceutical (http://www.otsuka.global.com); RFP, INH, EB, streptomycin (SM), and PZA were purchased from Sigma (http://www.sigmaaldrich.com). OPC-67683, RFP, INH, PZA, and PA-824 were each dissolved in dimethylsulfoxide (DMSO), and the solutions were diluted serially with DMSO in 2-fold dilutions to desired concentrations. EB and SM were dissolved in distilled water, and the solutions were serially diluted with distilled water in 2-fold dilutions to desired concentrations. Drug Preparation for In Vivo Studies OPC-67683, PA-824, RFP, INH, EB, and PZA were each pestled in a mortar and dissolved or suspended in 5% gum arabic solution using an ultrasonic generator. Two-fold dilutions were then conducted using 5% gum arabic solution to adjust to the desired concentrations. Strains M. tuberculosis ATCC 25618 (H37Rv), M. tuberculosis ATCC 35838 (H37Rv-R-R), M. tuberculosis ATCC 35822 (H37Rv-H-R), M. tuberculosis ATCC 35837 (H37Rv-E-R), M. tuberculosis ATCC 35820 (H37Rv-S-R), M. tuberculosis ATCC 35801 (Erdman), and M. tuberculosis ATCC 35812 (Kurono) were purchased from American Type Culture Collection (http://www.atcc.org). M. bovis IID 982 (BCG Tokyo) was purchased from the Institute of Medical Science, University of Tokyo. A total of 67 M. tuberculosis strains used in this study were isolated in Japan, Myanmar, Thailand, Cambodia, Indonesia, Vietnam, and China. BRM Test The BRM test was performed in accordance with OECD Guideline 471 using Salmonella tyiphimurium TA98, TA100, TA1535, and TA1537, and Escherichia coli WP2 uvrA [11]. Each bacterial strain was pre-cultured at 37 °C for 18 h using a nutrient broth (Nissui Pharmaceutical; http://www.nissui-pharm.co.jp/index_e.html). After adjustment to 2.4 at OD660 nm, each bacterial suspension was added to a test tube containing the designated compound in the absence or presence of rat liver microsome (S9) mix. After a 20-min incubation at 37 °C, top agar was added to each test tube and the contents were poured into minimum essential medium (Oriental Yeast; http://www.oyc.co.jp/e/index.htm). The number of revertants was counted 48 h after incubation at 37 °C. Susceptibility Testing Susceptibility testing was performed using a procedure previously reported [12,13]. Bacteria stocks preserved in a deep freezer were each dissolved and adjusted to approximately 106 colony-forming units (CFU)/ml. Drug-containing plates were inoculated with the designated bacterial suspension to approximately 106 CFU/ml using a multipoint inoculator (Sakuma Seisakusho; http://homepage1.nifty.com/sakuma2000). Each plate was incubated at 37 °C for 14 d and analyzed to determine the minimum inhibitory concentration (MIC). The MIC was expressed as the lowest concentration that inhibited visible growth of organism on the agar medium after incubation. For the evaluation of susceptibility against clinically isolated strains, resistance was determined based on the following criteria recommended by the National Committee for Clinical Laboratory Standards [14]: 1.0 μg/ml for RFP, 1.0 μg/ml for INH, 7.5 μg/ml for EB, and 10 μg/ml for SM. We calculated the concentrations at which 90% of the susceptible strains were inhibited (MIC90) and the 95% confidence intervals using the probit method. Inhibitory Activity against Mycolic Acid Biosynthesis M. bovis BCG cell culture was apportioned to each assay tube at a volume of 0.98 ml, and then 0.01 ml of the test sample solution or DMSO (vehicle control) was added. Then, 0.01 ml of 2-14C acetic acid sodium salt was added to each tube at 1 mCi/tube (37 Bq/tube), followed by incubation at 37 °C for 60 min. The 14C-labeled cells were harvested by centrifugation at 2,000 × g for 10 min and hydrolyzed by 2 ml of 10% potassium hydroxide/methanol (20% potassium hydroxide:methanol = 1:1, vol/vol) at 37 °C for 1 h. After incubation, 1 ml of 6 M hydrochloric acid was added and mixed gently. Then, 5 ml of n-hexane was added, followed by extraction by shaking for 20 min. Separating upper-phase centrifugation (1,000 × g for 5 min) was then performed, and 4 ml of the upper hexane phase was removed and transferred to another tube and dried at 100 °C. For methyl esterization, 1 ml of benzene-methanol-concentrated sulfuric acid (10:20:1, vol/vol/vol) was added and incubated at 100 °C for 1 h for drying. Then, 0.2 ml of n-hexane was added and mixed to extract 14C-labeled fatty acid and mycolic acid. The extracted fatty acid and the mycolic acid subclasses were separated onto a thin-layer plate of Silicagel 60 F254 (thin-layer chromatography plate, Merck Japan; http://www.merck.co.jp/eng/index.html). 0.01 ml of extracted hexane phase was applied to the plate and allowed to develop to a diameter of 4 cm in the first solvent (heptan–diethylether–acetic acid [94:5:1, vol/vol/vol]) and 8 cm in the second solvent (petroleum ether–acetic acid [98:2, vol/vol]). Three thin-layer chromatography plates were fixed with an imaging plate (BAS-SR, Fujifilm; http://www.fujifilm.com) and analyzed by the following procedures: 14C-labeled fatty acid and mycolic acid were detected using a BAS-2500 imaging system (Fujifilm). The radioactivity of each mycolic acid subclass was calculated as photo-stimulated luminescence using Image Gauge software (Version 2.54). Statistical analysis was conducted, using SAS software (R.8.1, SAS Institute; http://www.sas.com), on the values of percent of control that were calculated automatically using Image Gauge software (Version 2.54) based on the result of each photo-stimulated luminescence. The significance level of the test was set at 5%. IC50 values (concentration required to inhibit by 50%) and 95% confidence intervals were calculated by linear regression analysis with logarithmic transformed concentrations. Analysis of Metabolites Produced after Mixing OPC-67683 and M. bovis BCG Tokyo 15 μl of 14C OPC-67683 (0.5 mg/ml:1 μCi/μl) was added to 585 μl of 7H9/TN-ADC broth or bacterial culture and incubated for 48 h. After incubation, a 2-fold volume of acetonitrile was added and mixed well. The lysate was centrifuged for 5 min at 15,000 rpm, and the supernatant was analyzed using high-performance liquid chromatography (HPLC) with flow scintillation analyzer to determine the metabolite pattern. In a parallel experiment, 0.1 ml of the supernatant was added to the vial containing 5 ml of Scintillation Cocktail (Ultima Gold, Perkin Elmer; http://www.perkinelmer.com). The pellet was suspended in 600 μl of 2 M sodium hydroxide and incubated for 1 h at 60 °C, and 0.1 ml of the suspension was added to the vial containing the Scintillation Cocktail. These samples were measured using a Scintillation Counter (LS5000CE, Beckman; http:/www.beckmancoulter.com) to confirm the existence of covalently binding radioactive molecules. Determination of the Structure of Metabolite Produced after Mixing OPC-67683 and M. bovis BCG Tokyo 75 μl of OPC-67683 (0.5 mg/ml) was added to 2,925 μl of 7H9/TN-ADC broth or M. bovis BCG Tokyo bacterial culture and incubated for 72 h. After incubation, a 2-fold volume of acetonitrile was added and mixed well. The lysate was centrifuged for 5 min at 15,000 rpm, and the supernatant was then analyzed using LC-MS/MS to determine the structure of the detected metabolite produced by mixing OPC-67683 with M. bovis BCG Tokyo. The identified metabolite was synthesized at Otsuka Pharmaceutical, and the fragment pattern of the metabolite was then compared with that of another compound newly synthesized based on the predicted structure. Activity against Intracellular Mycobacteria Human THP-1 monocytic cells were differentiated into macrophages by treatment with 100 ng/ml phorbol 12-myristae 13-acetate (PMA) in RPMI-1640 medium and were distributed at a portion of 1 × 106/ml after a 2-d incubation. The differentiated macrophages were then inoculated with 6.88 log10 CFU of M. tuberculosis H37Rv for 4 h, washed twice with the medium to roughly remove the non-infecting bacteria, and then treated with 20 μg/ml SM for 20 h to kill the remaining viable extracellular bacteria. The starting CFU count in the cells was 6.42 log10 CFU. The cells were subsequently treated with the designated test compound for 4 h and were then washed twice with fresh medium to remove the added test compound. After an additional 68-h culture, the cells were lysed using 0.1% SDS, and the viable bacteria were counted in 7H11 agar plates to determine the potency against intracellular mycobacteria. Plasma Levels in an Experimental Mouse Model of TB Mice were anesthetized by an intramuscular administration with a 0.05-ml solution containing ketamine and xylazine (Ketalar 50 [Sankyo; http://www.sankyo.co.jp/english]/Serakutaru 2% [Bayer; http://www.bayer.com])/sterile physiological saline solution = 8:3:9), infected by an intratracheal inoculation with a 0.05-ml cell suspension (1,010 CFU) of M. tuberculosis Kurono using feeding needle and micro-syringe, and housed for 28 d prior to the initiation of administration. The designated compound dissolved or suspended in 5% gum arabic was then administered orally. Blood samples (approximately 1 ml) at each time-point were collected into a heparinized syringe from the abdominal post cava under ether anesthesia. The blood samples were then centrifuged (3,000 rpm, at 5 °C) to extract the plasma. The plasma (0.1 ml) was mixed with acetonitrile (0.2 ml) for RFP and with ethanol (0.3 ml) for INH, EB, and PZA. For OPC-67683, the plasma obtained was filtered through a 0.22-μm filter, and then 0.1 ml of the filtered plasma was mixed with 0.5 ml of 0.5 M carbonate buffer (pH 10) and 5 ml of diethyl ether. After shaking for 10 min, the organic layer (4 ml) was dried using nitrogen gas at 40 °C and dissolved with 0.2 ml of methanol/water/formic acid (50/50/0.1). The samples were analyzed using HPLC and high-performance liquid chromatography–electrospray ionization–tandem mass spectrometry (LC-ESI-MS/MS). Therapeutic Efficacy For evaluation of the therapeutic efficacy of OPC-67683, we designed three experiments that used various mouse models of TB, as described below. In each experiment, the designated compound dissolved or suspended in 5% gum arabic was administered orally once daily. At the end of the treatment period, the mice were euthanized (exsanguination through the abdominal inferior vena cava) under ether anesthesia, and the lung was aseptically excised. A lung homogenate for each mouse was prepared by pestling the lung evenly with a glass homogenizer after adding sterile distilled water to the excised lungs, and the homogenate was then diluted further with distilled water. A smear plate for each lung homogenate was then prepared by spreading 0.1 ml of each diluted solution on a 7H11 agar plate using a spreader. After spreading the homogenate solution, all plates were incubated at 37 °C and counted for formed colonies after 14 d. Therapeutic efficacy in an experimental mouse model of chronic TB. In order to examine the therapeutic efficacy of OPC-67683 and to determine the therapeutic dose range, an experimental mouse model of chronic TB was established by inoculating Institute of Cancer Research (ICR) mice with M. tuberculosis Kurono through the caudal vein and allowing the infection to develop for 28 d. OPC-67683, RFP, INH, EB, SM, or PZA was then administered once daily for 28 d to examine the change in viable bacterial count in the lung. ICR mice were inoculated intravenously with 8.6 × 104 CFU of M. tuberculosis Kurono. After a 28-d period, the mice were assigned to groups (n = 5/group) using a stratified randomization method based on the body weight of each infected mouse. The test compounds were then administered orally once daily for 28 d (OPC-67683: 40 to 0.156 mg/kg, RFP: 20 to 1.25 mg/kg, INH: 20 to 1.25 mg/kg, EB: 160 to 20 mg/kg, SM: 160 to 20 mg/kg, PZA: 320 to 40 mg/kg, and PA-824: 40 to 1.25 mg/kg [2-fold dilutions]). CFU counts were performed as described above. All lungs were homogenized with 5 ml of sterile distilled water. Statistical analysis was conducted using SAS software (R.8.1) on the number of viable bacteria in the lung of mice surviving until necropsy on the 57th day after inoculation, and on the number at the start of the treatment, which was on the 29th day after inoculation. The significance level of the test was set at 5%. A test for dose dependency was performed using linear regression analysis based on log-transformed values of the viable bacterial counts in the lung. When dose dependency was confirmed, the Williams' test (lower-tailed) was subsequently performed, and when dose dependency was not confirmed, the Dunnett's test (two-tailed) was subsequently performed against each of the control groups. Therapeutic efficacy in an experimental TB model using immunocompromised mice. To examine whether immunity relates to the mechanism of action in vivo, we performed experiments using BALB/c nude mice, which lack both conventional CD4+ and CD8+ T cells. The anti-tubercular activity of OPC-67683 in nude mice was compared with that in immunocompetent mice. BALB/c nude mice and BALB/c mice were inoculated intravenously with 2.04 × 104 CFU of M. tuberculosis Kurono. 1 d after inoculation, the mice were assigned to groups (n = 5/group) using a stratified randomization method based on the body weight of each infected mouse. OPC-67683 was then administered orally once daily for 10 d (OPC-67683: 10 to 0.313 mg/kg [2-fold dilutions]). CFU counts were performed as described above. All lungs were homogenized with 5 ml of sterile distilled water. Therapeutic efficacy in combination with conventionally used drugs. A new regimen that included OPC-67683 was evaluated and compared with a global standard regimen to determine the best regimen for reducing the treatment duration in an experimental mouse model of chronic TB. ICR mice were inoculated intratracheally under anesthesia with 855 CFU of M. tuberculosis Kurono, and left for 28 d to allow the animals to develop chronic TB. Grouping (n = 6/group) was conducted by a stratified randomization method based on the body weight of each infected mouse. The test regimens were then administered orally for 2 mo in the combination of OPC-67683, RFP, and PZA, or RFP, INH, EB, and PZA as an intensive treatment, and for an additional 2 mo in the combination of OPC-67683 and RFP or 4 mo in the combination of RFP and INH as a maintenance treatment. The doses used in this experiment provided plasma levels in mice similar to those seen at the standard doses used in humans: for RFP, we used 5 mg/kg; for INH, 10 mg/kg; for EB, 100 mg/kg; and for PZA, 100 mg/kg. We set the dose for OPC-67683 at 2.5 mg/kg. Necropsy was performed on days 29, 57, 85, 113, 141, 169, and 177 relative to the inoculation for the standard regimen and vehicle control groups and on days 29, 57, 85, 113, and 141 for the new-regimen groups. A lung homogenate for each mouse from a drug-treated group was prepared by pestling the lung evenly with a glass homogenizer after adding to the excised lungs 5 ml of sterilized distilled water on day 29 and 2 ml of sterilized distilled water on the day of necropsy. Lung homogenates for all vehicle control groups were prepared by pestling the lung evenly with a glass homogenizer after adding 5 ml of sterilized distilled water to the excised lungs. Smear plates of lung homogenate samples from the groups after 2–6 mo of treatment were prepared by spreading all of the lung homogenate on 7H11 agar plates. Statistical analysis was conducted using SAS software (R.8.1) on the viable bacteria number in the lungs of mice surviving until necropsy after the inoculation. The significance level of the test was set at 5%. The viable bacterial count in the lungs of mice anatomized at days 57, 85, 113, and 141 were log-transformed for comparing the new regimen with the standard regimen using the two-tailed Dunnett's test. The mean values and 95% confidence intervals were calculated for evaluating the new regimen. In Vitro Metabolism of OPC-67683 in Human and Animal Liver Microsomes The study was undertaken to investigate the metabolites produced by the metabolic reactions of OPC-67683 using human, rat, mouse, dog, rabbit, and monkey liver microsomes. Pooled human liver microsomes (20 mg/ml) from ten donors were prepared at the Biomedical Research Institute, Human and Animal Bridge Discussion Group (Chiba, Japan) [15]. Human liver samples were legally procured from the National Disease Research Interchange (http://www.ndriresource.org/) through the international partnership with the Human and Animal Bridge Discussion Group. The study was conducted in accordance with the Declaration of Helsinki. The incubation mixtures contained 100 mM phosphate buffer (pH 7.4), 100 μM OPC-67683, 2.5 mM β-NADPH, 2.5 mM β-NADH, and 1 mg/ml microsomal protein in a final incubation volume of 0.5 ml. OPC-67683 was dissolved in DMSO, and the concentration of the organic solvent was 1% (v/v) in the reaction system. The reactions were performed in duplicate in a shaking water bath at 37 °C for 2 h. The incubation mixtures were extracted with acetonitrile and ethyl acetate, and the samples were analyzed by HPLC and LC-ESI-MS/MS. Effect of OPC-67683 on Cytochrome P450–Mediated Reactions in Human Liver Microsomes 7-ethoxyresorufin O-deethylase activity by CYP1A1/2, coumarin 7-hydroxylase activity by CYP2A6, 7-benzyloxyresorufin O-debenzylase activity by CYP2B6, tolbutamide methylhydroxylase activity by CYP2C8/9, S-mephenytoin 4′ -hydroxylase activity by CYP2C19, bufuralol 1′ -hydroxylase activity by CYP2D6, chlorzoxazone 6-hydroxylase activity by CYP2E1, and testosterone 6β-hydroxylase and nifedipine oxidized activities by CYP3A4 were determined as previously reported [16]. Standard incubation mixtures of 0.5 ml contained microsomal protein (0.1–0.5 mg), 0.1 M potassium phosphate buffer (pH 7.4), 0.1 mM EDTA, NADPH-generating system (2.5 mM β-NADP, 25 mM glucose-6-phosphate, 2 units of glucose-6-phosphate dehydrogenase, and 10 mM magnesium chloride), and substrates with or without OPC-67683. OPC-67683 was dissolved in DMSO and added to incubations at a volume of 5 μl. Substrates were dissolved in the following solvents: 7-ethoxyresorufin and 7-benzyloxyresorufin in DMSO; coumarin, bufuralol, and nifedipine in ethanol; tolbutamide, S-mephenytoin and testosterone in methanol; and chlorzoxazone in 1% (w/v) aqueous solution. The substrate solutions were added to incubations at a volume of 5 μl. The enzyme incubations were carried out in duplicate, and formations of metabolites were determined by HPLC. Assay methods were validated in this study. The calibration curves were established for resorufin (0.2–200 nM, r = 0.9996), 7-hydroxycoumarin (0.05–5 μM, r = 0.9998), 4-hydroxytolbutamide (0.05–10 μM, r = 0.9998), 4-hydroxymephenytoin (0.025–5 μM, r = 0.9996), 1′ -hydroxybufuralol (0.025–5 μM, r = 0.9995), 6-hydroxychlorzoxazone (0.25–100 μM, r = 0.9994), 6β-hydroxytestosterone (0.03–30 μM, r = 0.9994), and oxidized nifedipine (0.1–25 μM, r = 0.9998). 7-ethoxyresorufin (0.5 μM), coumarin (2 μM), 7-benzyloxyresorufin (1.5 μM), tolbutamide (400 μM), S-mephenytoin (100 μM), bufuralol (20 μM), chlorzoxazone (100 μM), testosterone (100 μM), and nifedipine (50 μM) were selected as the concentrations of the substrates for the determination of residual activity in the presence of OPC-67683 (1–100 μM). The concentrations of the substrates were approximately the Km values for the enzymes as previously reported [17]. Selective Cytochrome P450 inhibitors were used in this study to confirm the validity of the assays. 7,8-benzoflavone [18], furafylline [19], orphenadrine [20], quercetin [21], sulfaphenazole [22], tranylcypromine [23], quinidine [24], diethyldithiocarbamate [25], and ketoconazole [26], which are inhibitors of CYP1A1, 1A2, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, and 3A4, respectively, inhibited the respective enzyme activities. Diethyldithiocarbamate is also known to be a specific inhibitor of CYP2A6 [18], and the present study confirmed the potent inhibitory capability of this compound on CYP2A6-mediated metabolism. Other Information The care and handling of the animals was in accordance with “Guidelines for Animal Care and Use in Otsuka Pharmaceutical Co., Ltd.” The aspects of experiments related to biosafety were performed according to standards set forth in “Biosafety manuals in Microbiological Research Institute and 3rd Institute of New Drug Discovery, Otsuka Pharmaceutical Co., Ltd.” Results BRM Test The mutagenic potential of OPC-67683 was evaluated in the absence and presence of S9 mix using the BRM test in accordance with OECD Guideline 471. As shown in Table 1, OPC-67683 did not show mutagenicity. Table 1 Bacterial Reverse Mutation Test for OPC-67683 Susceptibility Testing The MICs against standard strains are shown in Table 2. At concentrations ranging from 0.006 to 0.012 μg/ml, OPC-67683 inhibited the growth of both drug-susceptible and drug-resistant M. tuberculosis. The MICs of OPC-67683 were, respectively, four to 64, two to 32, 128 to 256, 64 to 512, eight to 16, and four to 16 times lower than those of RFP, INH, EB, SM, CGI-17341, and PA-824. These results indicate that OPC-67683 possesses the most potent anti-mycobacterial activity against both drug-susceptible and drug-resistant strains. Table 2 In Vitro Anti-Mycobacterial Activity of OPC-67683 Compared with RFP, INH, EB, SM, CGI-17341, and PA-824 The anti-tubercular activity was also evaluated on 67 clinically isolated strains. The MIC90 values (range) of OPC-67683, RFP, INH, EB, and SM were, respectively, 0.012 μg/ml (0.006–0.024 μg/ml), 0.288 μg/ml (0.05–0.78 μg/ml), 0.099 μg/ml (0.05–0.78 μg/ml), 3.636 μg/ml (0.78–6.25 μg/ml), and 2.938 μg/ml (0.39–6.25 μg/ml). Based on these results, the MIC90 values of OPC-67683 were about 24, eight, 303, and 244 times lower than those of RFP, INH, EB, and SM, respectively. The results of our evaluation indicated that OPC-67683 inhibited the growth of the clinically isolated drug-susceptible M. tuberculosis at the same range as on standard strains, and also showed activity against the clinically isolated strains resistant to the currently used anti-TB drugs RFP, INH, EB, or SM. These results indicate that OPC-67683 exhibits anti-mycobacterial activity on both drug-susceptible and drug-resistant strains and that it has no cross-resistance with any of the currently used anti-TB drugs. These data are shown in Table 3. Table 3 MIC90 of OPC-67683 against Drug-Susceptible and Drug-Resistant M. tuberculosis In addition, the efficacy of OPC-67683 in combination with currently used anti-TB drugs RFP, INH, EB, and SM was examined in vitro using the checkerboard method. These results are shown in Table 4. The results showed OPC-676783 to have no antagonistic activity in combination with any of the drugs tested. Table 4 In Vitro Synergistic Activity of OPC-67683 and Existing TB Drugs against Clinically Isolated M. tuberculosis Inhibitory Activity against Mycolic Acid Biosynthesis 14C-labeled fatty acid and mycolic acid were detected using the BAS-2500 imaging system (unpublished data). The percent with respect to the control of each mycolic acid subclass was calculated automatically, and IC50 was calculated using SAS software. The results indicated that both OPC-67683 and INH inhibited mycolic acid synthesis, but the manner of action differed between the two compounds: OPC-67683 inhibited the synthesis of methoxy- and keto-mycolic acid, with IC50 values of 0.021 to 0.036 μg/ml, but not the synthesis of α-mycolic acid at concentrations up to 0.25 μg/ml, while INH inhibited all mycolic acid subclasses, with IC50 values of 0.630 to 1.851 μg/ml. The IC50 and 95% confidence interval values are shown in Table 5. Table 5 IC50 of OPC-67683 and INH against Mycolic Acid Synthesis Analysis of Metabolites Produced after Mixing OPC-67683 and M. bovis BCG After mixing OPC-67683 with M. bovis BCG Tokyo, we identified only one main metabolite, and this metabolite eluted faster than OPC-67683. No metabolites, however, were observed after mixing OPC-67683 with an experimentally obtained OPC-67683-resistant M. bovis BCG Tokyo strain. These results are shown in Figure 2A. The supernatant was analyzed using LC-MS/MS to determine the structure of the identified metabolite. We found the mass number of the identified metabolite to be 490 and predicted this structure to be a desnitro-imidazooxazole. We then synthesized a desnitro-imidazooxazole and performed a product ion scan with the identified metabolite and the newly synthesized compound. We observed product ions in 200, 352, 378, and 406 m/z in each experiment. Structural analysis of the main metabolite indicated that the structure was a desnitro-imidazooxazole possessing the same substituent as that of OPC-67683. The MS spectrum is displayed in Figure 2B. Figure 2 Analysis of Metabolites Produced after Mixing OPC-67683 and M. bovis BCG (A) 15 μl of 14C OPC-67683 (0.5mg/ml: 0.056 μCi/μl) was added to 585 μl of 7H9/TN-ADC broth or bacterial culture and incubated for 48 h. After incubation, a 2-fold volume of acetonitrile was added and mixed well. The lysate was centrifuged for 5 min at 15,000 rpm. The supernatant was analyzed using HPLC with flow scintillation analyzer to determine the metabolite pattern. (B) The identified metabolite (desnitro-imidazooxazole) was synthesized at Otsuka Pharmaceutical, and the fragment pattern of the metabolite by electrospray ionization mass spectroscopy was then compared with that of another compound newly synthesized based on the predicted structure. In addition, when we treated the drug-susceptible strain with the radioactive OPC-67683, none of the radioactivity was recovered after the addition of acetonitrile. About 20% of the total radioactivity was distributed to the cell components, and this phenomenon was not observed with an OPC-67683-resistant strain. These data are shown in Table 6. Table 6 Analysis of OPC-67683-Susceptible and -Resistant M. bovis BCG Using Radio-Labelled OPC-67683 Activity against Intracellular Mycobacteria in Human Macrophages A study was conducted to confirm the post-antibiotic effect of OPC-67683 on intracellular M. tuberculosis in THP-1 cells, and the results were compared with RFP, INH, and PA-824. OPC-67683 was shown to be highly active against intracellular M. tuberculosis H37Rv after 4-h pulsed exposures in a dose-dependent manner. The data are shown in Figure 3. The intracellular activity of OPC-67683 at a concentration of 0.1 μg/ml was similar to that of RFP of 3 μg/ml, but was superior to INH and PA-824, which both showed poor activity during the 4-h pulsed exposure. These results indicated that even with limited contact with the bacteria within the cells, OPC-67683 might be able to effectively kill the intracellular mycobacteria. Figure 3 Effect of Pulsed Exposures to OPC-67683, RFP, INH, and PA-824 on the Intracellular Growth of M. tuberculosis H37Rv within THP-1 Cells Infected cells were incubated with the test compound for 4 h, washed, cultured until 68 h at 37 °C, plated on 7H11 agar, and counted for colonies after 16 d of growth at 37 °C. Values represent mean ± S.D (n = 3). Plasma Levels in an Experimental Mouse Model of TB As shown in Table 7, OPC-67683 exhibited the lowest plasma concentration but longest half-life among the tested reference drugs. The Cmax and AUCt values for RFP, EB, and PZA in mouse plasma at the tested dose were similar to those in human at clinical doses. The Cmax value for INH in mouse plasma was also similar to that in humans, but the AUCt in the mouse was lower than that in humans. A comparison of these parameters between mouse and human plasma is summarized in Figure 4C [27–29]. Table 7 Plasma Concentration of OPC-67683, RFP, INH, EB, and PZA after Oral Administration in Mice Infected with M. tuberculosis Kurono Figure 4 Effects of OPC-67683 in an Experimental Mouse Model of TB (A) ICR mice were inoculated intravenously with M. tuberculosis Kurono. After 28 d, test compounds were administered orally once daily for 28 d (OPC-67683: 40–0.156 mg/kg, RFP: 20–1.25 mg/kg, INH: 20–1.25 mg/kg, EB: 160–20 mg/kg, SM: 160–20 mg/kg, PZA: 320–40 mg/kg, and PA-824: 40–1.25 mg/kg; 2-fold dilution). Mean value (n = 5) of log10 CFU was plotted. (B) BALB/c standard and nude mice were inoculated intravenously with M. tuberculosis Kurono. From the following day, OPC-67683 was administered orally once daily for 10 d (OPC-67683: 10–0.313 mg/kg, 2-fold dilution). The bar was expressed as mean value and SD (n = 5) of log10 CFU. (C) The doses of conventional drugs used for evaluating regimen are summarized in this table. The doses set up for using the plasma Cmax achieved in mice TB model is equivalent to that achieved in humans at the clinical dose. (D) ICR mice were inoculated intratracheally with M. tuberculosis Kurono. After 28 d, mice were treated for 2 mo with a combination of OPC-67683, RFP, and PZA (ORZ), or RFP, INH, EB, and PZA (RHEZ) (intensive treatment), and for an additional 2 mo with OPC-67683 and RFP or 4 mo with RFP and INH (maintenance treatment) (OPC-67683: 2.5 mg/kg, RFP: 5 mg/kg, INH: 10 mg/kg, EB: 100 mg/kg, and PZA: 100 mg/kg). Mean value and SD bar (n = 6) of log10 CFU was plotted. The fraction refers to the number of mice in which at least one colony was detected of the total number of surviving mice. Therapeutic Efficacy Therapeutic efficacy in an experimental mouse model of chronic TB. The viable bacterial count in the OPC-67683-treated groups decreased dose-dependently, and the therapeutic effects of the compound were observed and compared with those of the reference drugs. The results are shown in Figure 4A and Table S1. The dose groups that showed a significant decrease in pulmonary viable bacterial count when compared with the vehicle control group were 0.313, 0.625, 1.25, 2.5, 5, 10, 20, and 40 mg/kg for OPC-67683; 3.5, 5, 10, and 20 mg/kg for RFP; 2.5, 5, 10, and 20 mg/kg for INH; 160 mg/kg for EB, 20, 40, 80, and 160 mg/kg for SM; and 80, 160, and 320 mg/kg for PZA. The doses of OPC-67683, RFP, INH, EB, SM, and PZA that could produce a CFU reduction of at least 95% in this experimental mouse model were 0.625, 3.5, 5, >160, 40, and 160 mg/kg, respectively. Therapeutic efficacy in an experimental TB model using immunocompromised mice. These results are shown in Figure 4B. The pulmonary CFU counts of the OPC-67683-treated BALB/c nude mice and immunocompetent mice were reduced dose-dependently, and significant decreases were observed at doses of 0.313, 0.625, 1.25, and 2.5 mg/kg. The efficacy profiles of OPC-67683 were similarly excellent in both types of mice. Therapeutic efficacy in combination with conventionally used drugs. The eradication rate of a new regimen containing OPC-67683 was compared with that of the standard regimen. The OPC-67683-containing regimen exerted a rapid and consistent reduction during the first 3 mo (Figure 4D). At 3 mo after the start of treatment, only one colony was detected in one of the six animals; at 4 mo, no colonies were detected in any of the six animals. In contrast, at 6 mo for the standard regimen, colonies were detected in four out of five mice. These results suggest that a new regimen containing OPC-67683 could dramatically reduce the treatment duration by at least 2 mo. In Vitro Metabolism in Human and Animal Liver Microsomes The current study was conducted to investigate the metabolites produced by in vitro metabolism of OPC-67683 using human and animal liver microsomes and to investigate the in vitro ability of OPC-67683 to affect the metabolism of substrates for CYP1A1/2, CYP2A6, CYP2B6, CYP2C8/9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4. The results are shown in Table 8. Table 8 Effect of OPC-67683 on CYP1A1/2, CYP2A6, CYP2B6, CYP2C8/9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4 Mediated Reactions in Human Liver The HPLC and LC-ESI-MS/MS data demonstrated that the major metabolites were hardly detected in the incubation mixture OPC-67683 with human, rat, mouse, dog, rabbit, and monkey liver microsomes. OPC-67683 was stable in the in vitro metabolism of human and animal liver microsomes. These results suggest that OPC-67683 is not metabolized by the CYP enzymes. OPC-67683 had neither stimulatory nor inhibitory effects on CYP1A1/2, CYP2A6, CYP2B6, CYP2C8/9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4 activities at concentrations up to 100 μM, indicating that OPC-67683, at the expected therapeutic concentrations, would not be predicted to cause clinically significant interactions with other CYP-metabolized drugs. Discussion With the several disadvantages to the current TB drug regimen, there are a number of expectations for a new anti-TB drug. An ideal new drug should be safe and able to shorten the treatment duration, be effective against MDR-TB, treat TB patients co-infected with HIV, and effectively address LTBI. We have performed our TB research program with these expectations in mind. To shorten the duration of treatment, we focused our search on finding more powerful anti-TB agents, as history has shown that the introduction of more potent drugs can effectively reduce the required duration of treatment, as was the case with RFP and PZA. For improved efficacy against MDR-TB, we screened for compounds with a new structure and mechanism of action. Furthermore, to target LTBI, we focused on compounds with activity against intracellular M. tuberculosis. Mycobacteria are well known to be wax-rich bacteria, and a main component of the wax is mycolic acid, which is detected only in mycobacteria and not in gram-positive or gram-negative bacteria or in mammalian cells. Genome research of tubercle bacilli has verified this lipid richness, showing there to be almost 250 distinct enzymes involved in the lipid metabolism of tubercle bacilli [30]. In view of the important role of mycolic acid in mycobacteria, we searched for a compound that could inhibit mycolic acid synthesis and demonstrate potent anti-TB activity in vitro. We found OPC-67683 to have both inhibitory activity on mycolic acid biosynthesis and potent in vitro activity against M. tuberculosis, as indicated by its low MIC range across many strains, including MDR-TB. The IC50 values of OPC-67683 for mycolic acid subclasses were lower than those of INH, and these results correlated well with the in vitro anti-tubercular activity of OPC-67683 and INH. The anti-tubercular activity of nitro-imidazooxazole derivatives correlated well with their inhibitory activity against mycolic acid biosynthesis [11]. We therefore concluded that the inhibitory activity of OPC-67683 against mycolic acid synthesis was a mechanism of action attributable to killing mycobacteria at least as potently as INH. As M. tuberculosis can grow not only facultatively but also as intracellular organisms that survive and multiply in macrophages of the infected host, we consider it important that a compound is also able to kill intracellular TB and that such activity should correlate with a shortened treatment duration and could be an important factor in the treatment of LTBI. We therefore examined the killing activity against intracellular TB in macrophage-derived THP-1 cells. Among the tested compounds, OPC-67683 demonstrated the most potent killing activity. The killing activity of OPC-67683 at 0.1 μg/ml was similar to that of RFP at 3 μg/ml and was superior to that of INH and PA-824. The intracellular potency of antibiotics is commonly evaluated in vitro using continuous exposure rather than in animal models due to their often-rapid elimination, depending on the plasma half-life. OPC-67683 was able to demonstrate potent in vitro killing ability even at short exposure times. These results indicate that OPC-67683 would likely exert strong antibiotic activity against intracellular TB in patients even at short exposure times, which could be an advantage in intermittent treatment. PA-824 has been reported to be a prodrug metabolized to its active form by mycobacterium [31]. Recently, Manjunatha et al reported that Rv3547 acts as the catalytic enzyme for PA-824, but the role of Rv3547 within mycobacterium is not yet clear [32]. Similarly, OPC-67683 also requires metabolic activation by M. tuberculosis in order for the anti-TB activity to be exerted. Experimentally isolated OPC-67683-resistant mycobacterium did not metabolize the compound. We confirmed a mutation in the Rv3547 gene among the resistant organisms, indicating Rv3547 to be a key enzyme involved in activating OPC-67683, as it was for PA-824 (unpublished data). According to Manjunatha et al, the metabolites of PA-824 have not yet been identified. With OPC-67683, however, the main metabolite produced in the presence of M. tuberculosis was identified as a non-active desnitro-imidazooxazole. This result suggests that Rv3547 possesses a reduction potency of the nitro residue and that an intermediate between OPC-67683 and the desnitro-imidazooxazole could be the active form. After mixing radioactive OPC-67683 with viable mycobacterium, nearly 20% of the radioactive substances were not recovered. In contrast, after treating OPC-67683-resistant mycobacterium, nearly 100% of radioactivity was recovered. The action mechanism of metronidazole derivatives against H. pylori has been reported to be due to the production of a radical intermediate [33]. This information suggests the possibility that a radical intermediate that appears as the intermediate for the metabolism of a nitro residue covalently binds to the target molecule. If this hypothesis is correct, it could well explain the strong post-antibiotic effect seen with OPC-67683 against intracellular mycobacterium, a property considered necessary to kill latent TB. The therapeutic efficacy of OPC-67683 was evaluated in vivo in an experimental chronic TB mouse model. In this model, OPC-67683 exhibited the most potent anti-tubercular activity in comparison with the reference compounds. The viable bacterial counts in the lung were markedly reduced dose-dependently by OPC-67683 at 0.313 mg/kg and higher. A 95% reduction in bacterial load was achieved at 0.625 mg/kg. Furthermore, the efficacy of OPC-67683 in a TB model established using immunodeficient mice was similar to that seen using standard mice. Treatment of TB requires combination therapy not only to shorten the treatment duration but also to prevent the development of resistance. The effects of OPC-67683 in combination with currently used TB drugs were therefore evaluated both in vitro and in vivo. OPC-67683 did not exert antagonistic effects in any of the tested combinations, and produced partial synergistic or synergistic effects when combined with RFP or EB in vitro. A combination regimen containing OPC-67683, RFP, and PZA produced a steady rapid reduction in bacterial load over the first 3 mo. These results suggest that a new regimen containing OPC-67683 could possibly be effective in shortening the clinical treatment duration. Multiple-drug therapy is a common clinical practice, particularly in patients with concomitant diseases or conditions. However, whenever two or more drugs are administered concurrently, the possibility of drug interactions exists. Many drug interactions are clinically caused by inhibition of drug-metabolizing enzymes, such as CYPs, leading to decreased metabolic clearance and increased exposure to the inhibited drug [34–36]. Rifamycin derivatives such as RFP usually induce CYP3A4 enzymes, remarkably reducing the bioavailability of the drug itself as well as other CYP-intermediated drugs, including protease inhibitors, which are indispensable in the treatment of HIV/AIDS [37]. It is therefore important that a new TB drug does not induce nor is affected by metabolic enzymes. With this in mind, we studied the interactions between OPC-67683 and metabolic enzymes. Our results showed that OPC-67683 was hardly metabolized when exposed to human and animal liver microsomes and did not have inductive, stimulatory, or inhibitory effects on CYP enzyme activities at concentrations up to 100 μM, indicating that OPC-67683, at the expected therapeutic concentrations, would not be expected to cause clinically significant interactions with other CYP-metabolized drugs, such as rifamycin derivatives. These results, together with data supporting non-compromised anti-TB activity in immunodeficient animals, suggest that OPC-67683 could be useful in treating TB patients who are also co-infected with HIV/AIDS. We conclude that OPC-67683 possesses qualities that could help address the unmet needs in TB chemotherapy, i.e., the need for shortened treatment duration, effectiveness against MDR-TB, ability to be used safely in HIV/AIDS patients, and the treatment of LTBI. An early Phase II clinical study to confirm the efficacy in patients is now ongoing. Furthermore, the Global Alliance for TB Drug Development is aiming to establish an entirely new regimen containing the best combination of new drugs [38]. Development and integration of these drugs into the regimen individually would normally be done in series, taking at least six years for each drug. We therefore attach importance to including an evaluation of the effects of OPC-67683 in combination with not only conventional drugs but also new drugs as early as possible in order to contribute data necessary for establishing the best regimen needed to address the unmet needs in TB treatment. Supporting Information Table S1 Viable Count in Lung of Each Group of OPC-67683, RFP, INH, EB, SM, PZA, and PA-824 after 4 wk of Treatments on the Experimental Chronic TB Model in Mice (43 KB DOC) Click here for additional data file.
                Bookmark

                Author and article information

                Journal
                Antimicrob Agents Chemother
                Antimicrob Agents Chemother
                aac
                aac
                AAC
                Antimicrobial Agents and Chemotherapy
                American Society for Microbiology (1752 N St., N.W., Washington, DC )
                0066-4804
                1098-6596
                26 October 2020
                16 December 2020
                January 2021
                16 December 2020
                : 65
                : 1
                : e01202-20
                Affiliations
                [a ]Otsuka Pharmaceutical Development and Commercialization, Inc., Rockville, Maryland, USA
                [b ]QuantPharm LLC, North Potomac, Maryland, USA
                Author notes
                Address correspondence to Xiaofeng Wang, Xiaofeng.Wang@ 123456otsuka-us.com .

                For a companion article on this topic, see [Related article:]https://doi.org/10.1128/AAC.01207-20.

                Citation Wang X, Mallikaarjun S, Gibiansky E. 2021. Population pharmacokinetic analysis of delamanid in patients with pulmonary multidrug-resistant tuberculosis. Antimicrob Agents Chemother 65:e01202-20. https://doi.org/10.1128/AAC.01202-20.

                Author information
                https://orcid.org/0000-0002-0890-3197
                Article
                01202-20
                10.1128/AAC.01202-20
                7927850
                33106258
                9657889f-5fe9-45b8-84ea-24f22c9b62c4
                Copyright © 2020 Wang et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

                History
                : 12 June 2020
                : 23 July 2020
                : 13 October 2020
                Page count
                Figures: 4, Tables: 5, Equations: 20, References: 24, Pages: 14, Words: 7423
                Funding
                Funded by: OAPI | Otsuka Pharmaceutical Development and Commercialization (OPDC), https://doi.org/10.13039/100015303;
                Award Recipient : Award Recipient : Award Recipient :
                Categories
                Pharmacology
                Custom metadata
                January 2021

                Infectious disease & Microbiology
                mycobacterium tuberculosis,delamanid,population pharmacokinetics

                Comments

                Comment on this article