Blog
About

0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comprehensive genomic analysis of dietary habits in UK Biobank identifies hundreds of genetic associations

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Unhealthful dietary habits are leading risk factors for life-altering diseases and mortality. Large-scale biobanks now enable genetic analysis of traits with modest heritability, such as diet. We perform a genomewide association on 85 single food intake and 85 principal component-derived dietary patterns from food frequency questionnaires in UK Biobank. We identify 814 associated loci, including olfactory receptor associations with fruit and tea intake; 136 associations are only identified using dietary patterns. Mendelian randomization suggests our top healthful dietary pattern driven by wholemeal vs. white bread consumption is causally influenced by factors correlated with education but is not strongly causal for coronary artery disease or type 2 diabetes. Overall, we demonstrate the value in complementary phenotyping approaches to complex dietary datasets, and the utility of genomic analysis to understand the relationships between diet and human health.

          Abstract

          The choice of food intake is at least partially influenced by genetics, even though the effect sizes appear rather modest. Here, Cole et al. perform GWAS for food intake (85 individual food items and 85 derived dietary patterns) and test potential causal relationships with cardiometabolic traits using Mendelian randomization.

          Related collections

          Most cited references 57

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          A global reference for human genetic variation

           Lachlan Coin (2017)
          The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010.

            Quantification of the disease burden caused by different risks informs prevention by providing an account of health loss different to that provided by a disease-by-disease analysis. No complete revision of global disease burden caused by risk factors has been done since a comparative risk assessment in 2000, and no previous analysis has assessed changes in burden attributable to risk factors over time. We estimated deaths and disability-adjusted life years (DALYs; sum of years lived with disability [YLD] and years of life lost [YLL]) attributable to the independent effects of 67 risk factors and clusters of risk factors for 21 regions in 1990 and 2010. We estimated exposure distributions for each year, region, sex, and age group, and relative risks per unit of exposure by systematically reviewing and synthesising published and unpublished data. We used these estimates, together with estimates of cause-specific deaths and DALYs from the Global Burden of Disease Study 2010, to calculate the burden attributable to each risk factor exposure compared with the theoretical-minimum-risk exposure. We incorporated uncertainty in disease burden, relative risks, and exposures into our estimates of attributable burden. In 2010, the three leading risk factors for global disease burden were high blood pressure (7·0% [95% uncertainty interval 6·2-7·7] of global DALYs), tobacco smoking including second-hand smoke (6·3% [5·5-7·0]), and alcohol use (5·5% [5·0-5·9]). In 1990, the leading risks were childhood underweight (7·9% [6·8-9·4]), household air pollution from solid fuels (HAP; 7·0% [5·6-8·3]), and tobacco smoking including second-hand smoke (6·1% [5·4-6·8]). Dietary risk factors and physical inactivity collectively accounted for 10·0% (95% UI 9·2-10·8) of global DALYs in 2010, with the most prominent dietary risks being diets low in fruits and those high in sodium. Several risks that primarily affect childhood communicable diseases, including unimproved water and sanitation and childhood micronutrient deficiencies, fell in rank between 1990 and 2010, with unimproved water and sanitation accounting for 0·9% (0·4-1·6) of global DALYs in 2010. However, in most of sub-Saharan Africa childhood underweight, HAP, and non-exclusive and discontinued breastfeeding were the leading risks in 2010, while HAP was the leading risk in south Asia. The leading risk factor in Eastern Europe, most of Latin America, and southern sub-Saharan Africa in 2010 was alcohol use; in most of Asia, North Africa and Middle East, and central Europe it was high blood pressure. Despite declines, tobacco smoking including second-hand smoke remained the leading risk in high-income north America and western Europe. High body-mass index has increased globally and it is the leading risk in Australasia and southern Latin America, and also ranks high in other high-income regions, North Africa and Middle East, and Oceania. Worldwide, the contribution of different risk factors to disease burden has changed substantially, with a shift away from risks for communicable diseases in children towards those for non-communicable diseases in adults. These changes are related to the ageing population, decreased mortality among children younger than 5 years, changes in cause-of-death composition, and changes in risk factor exposures. New evidence has led to changes in the magnitude of key risks including unimproved water and sanitation, vitamin A and zinc deficiencies, and ambient particulate matter pollution. The extent to which the epidemiological shift has occurred and what the leading risks currently are varies greatly across regions. In much of sub-Saharan Africa, the leading risks are still those associated with poverty and those that affect children. Bill & Melinda Gates Foundation. Copyright © 2012 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Potential etiologic and functional implications of genome-wide association loci for human diseases and traits.

              We have developed an online catalog of SNP-trait associations from published genome-wide association studies for use in investigating genomic characteristics of trait/disease-associated SNPs (TASs). Reported TASs were common [median risk allele frequency 36%, interquartile range (IQR) 21%-53%] and were associated with modest effect sizes [median odds ratio (OR) 1.33, IQR 1.20-1.61]. Among 20 genomic annotation sets, reported TASs were significantly overrepresented only in nonsynonymous sites [OR = 3.9 (2.2-7.0), p = 3.5 x 10(-7)] and 5kb-promoter regions [OR = 2.3 (1.5-3.6), p = 3 x 10(-4)] compared to SNPs randomly selected from genotyping arrays. Although 88% of TASs were intronic (45%) or intergenic (43%), TASs were not overrepresented in introns and were significantly depleted in intergenic regions [OR = 0.44 (0.34-0.58), p = 2.0 x 10(-9)]. Only slightly more TASs than expected by chance were predicted to be in regions under positive selection [OR = 1.3 (0.8-2.1), p = 0.2]. This new online resource, together with bioinformatic predictions of the underlying functionality at trait/disease-associated loci, is well-suited to guide future investigations of the role of common variants in complex disease etiology.
                Bookmark

                Author and article information

                Contributors
                Joel.Hirschhorn@childrens.harvard.edu
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                19 March 2020
                19 March 2020
                2020
                : 11
                Affiliations
                [1 ]GRID grid.66859.34, Programs in Metabolism and Medical and Population Genetics, , The Broad Institute of MIT and Harvard, ; Cambridge, MA USA
                [2 ]ISNI 0000 0004 0386 9924, GRID grid.32224.35, Diabetes Unit and Center for Genomic Medicine, , Massachusetts General Hospital, ; Boston, MA USA
                [3 ]ISNI 0000 0004 0378 8438, GRID grid.2515.3, Division of Endocrinology and Center for Basic and Translational Obesity Research, , Boston Children’s Hospital, ; Boston, MA USA
                [4 ]ISNI 000000041936754X, GRID grid.38142.3c, Department of Medicine, , Harvard Medical School, ; Boston, MA USA
                [5 ]ISNI 000000041936754X, GRID grid.38142.3c, Department of Genetics, , Harvard Medical School, ; Boston, MA USA
                Article
                15193
                10.1038/s41467-020-15193-0
                7081342
                32193382
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                Categories
                Article
                Custom metadata
                © The Author(s) 2020

                Uncategorized

                nutrition, behavioural genetics, genome-wide association studies

                Comments

                Comment on this article