131
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The microcirculation is the motor of sepsis

      review-article
      1 ,
      Critical Care
      BioMed Central
      Re-establishing organ function in severe sepsis: targeting the microcirculation
      2132005

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Regional tissue distress caused by microcirculatory dysfunction and mitochondrial depression underlies the condition in sepsis and shock where, despite correction of systemic oxygen delivery variables, regional hypoxia and oxygen extraction deficit persist. We have termed this condition microcirculatory and mitochondrial distress syndrome (MMDS). Orthogonal polarization spectral imaging allowed the first clinical observation of the microcirculation in human internal organs, and has identified the pivotal role of microcirculatory abnormalities in defining the severity of sepsis, a condition not revealed by systemic hemodynamic or oxygen-derived variables. Recently, sublingual sidestream dark-field (SDF) imaging has been introduced, allowing observation of the microcirculation in even greater detail. Microcirculatory recruitment is needed to ensure adequate microcirculatory perfusion and the oxygenation of tissue cells that follows. In sepsis, where inflammation-induced autoregulatory dysfunction persists and oxygen need is not matched by supply, the microcirculation can be recruited by reducing pathological shunting, promoting microcirculatory perfusion, supporting pump function, and controlling hemorheology and coagulation. Resuscitation following MMDS must include focused recruitment of hypoxic-shunted microcirculatory units and/or resuscitation of the mitochondria. A combination of agents is required for successful rescue of the microcirculation. Single compounds such as activated protein C, which acts on multiple pathways, can be expected to be beneficial in rescuing the microcirculation in sepsis.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Nitroglycerin in septic shock after intravascular volume resuscitation.

          In patients with septic shock, oxygen consumption is increased, but oxygen delivery and extraction is impaired, partly because of microcirculatory shutdown and shunting. Orthogonal polarisation spectral (OPS) imaging allows visualisation of the microcirculation. We used this technique to assess microcirculatory flow in septic-shock patients who had a mean arterial blood pressure of more than 60 mm Hg and central venous pressure greater than 12 mm Hg. The infusion of 0.5 mg of nitroglycerin intravenously then resulted in a marked increase in microvascular flow on OPS imaging. Improved recruitment of the microcirculation could be a new resuscitation endpoint in septic shock.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Immune cells: free radicals and antioxidants in sepsis.

            The excessive production of reactive oxygen species (ROS), associated with inflammation, leads to a condition of oxidative stress. Oxidative stress is a major contributing factor to the high mortality rates associated with several diseases such as endotoxic shock. This condition can be controlled to a certain degree by antioxidant therapies. Immune cells use ROS in order to support their functions and therefore need adequate levels of antioxidant defenses in order to avoid the harmful effect of an excessive production of ROS. This review discusses the toxic effects of endotoxin, paying particular attention to immune function. It continues by analyzing the mechanism to which specific cells of the immune system recognize endotoxin, and the resulting pathways leading to nuclear factor-kappaB activation and proinflammatory gene transcription. We also focus on the involvement of reactive oxygen and nitric oxide (NO) and the protective role of antioxidants. The potential clinical use of antioxidants in the treatment of sepsis and the effects on the redox state of the immune cells are discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bench-to-bedside review: Sepsis is a disease of the microcirculation

              Microcirculatory perfusion is disturbed in sepsis. Recent research has shown that maintaining systemic blood pressure is associated with inadequate perfusion of the microcirculation in sepsis. Microcirculatory perfusion is regulated by an intricate interplay of many neuroendocrine and paracrine pathways, which makes blood flow though this microvascular network a heterogeneous process. Owing to an increased microcirculatory resistance, a maldistribution of blood flow occurs with a decreased systemic vascular resistance due to shunting phenomena. Therapy in shock is aimed at the optimization of cardiac function, arterial hemoglobin saturation and tissue perfusion. This will mean the correction of hypovolemia and the restoration of an evenly distributed microcirculatory flow and adequate oxygen transport. A practical clinical score for the definition of shock is proposed and a novel technique for bedside visualization of the capillary network is discussed, including its possible implications for the treatment of septic shock patients with vasodilators to open the microcirculation.
                Bookmark

                Author and article information

                Conference
                Crit Care
                Critical Care
                BioMed Central
                1364-8535
                1466-609X
                2005
                25 August 2005
                : 9
                : Suppl 4
                : S13-S19
                Affiliations
                [1 ]Department of Physiology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
                Article
                cc3753
                10.1186/cc3753
                3226164
                16168069
                9672450c-01ad-4bb0-a42c-4079a12fabbb
                Copyright ©2005 BioMed Central Ltd
                Re-establishing organ function in severe sepsis: targeting the microcirculation
                Brussels, Belgium
                2132005
                History
                Categories
                Review

                Emergency medicine & Trauma
                Emergency medicine & Trauma

                Comments

                Comment on this article