54
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Simple Epidemiological Dynamics Explain Phylogenetic Clustering of HIV from Patients with Recent Infection

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Phylogenies of highly genetically variable viruses such as HIV-1 are potentially informative of epidemiological dynamics. Several studies have demonstrated the presence of clusters of highly related HIV-1 sequences, particularly among recently HIV-infected individuals, which have been used to argue for a high transmission rate during acute infection. Using a large set of HIV-1 subtype B pol sequences collected from men who have sex with men, we demonstrate that virus from recent infections tend to be phylogenetically clustered at a greater rate than virus from patients with chronic infection (‘excess clustering’) and also tend to cluster with other recent HIV infections rather than chronic, established infections (‘excess co-clustering’), consistent with previous reports. To determine the role that a higher infectivity during acute infection may play in excess clustering and co-clustering, we developed a simple model of HIV infection that incorporates an early period of intensified transmission, and explicitly considers the dynamics of phylogenetic clusters alongside the dynamics of acute and chronic infected cases. We explored the potential for clustering statistics to be used for inference of acute stage transmission rates and found that no single statistic explains very much variance in parameters controlling acute stage transmission rates. We demonstrate that high transmission rates during the acute stage is not the main cause of excess clustering of virus from patients with early/acute infection compared to chronic infection, which may simply reflect the shorter time since transmission in acute infection. Higher transmission during acute infection can result in excess co-clustering of sequences, while the extent of clustering observed is most sensitive to the fraction of infections sampled.

          Author Summary

          Diversity of viral genetic sequences depends on epidemiological mechanisms and dynamics, however the exact mechanisms responsible for patterns observed in phylogenies of HIV remain poorly understood. We observe that virus taken from patients with early/acute HIV infection are more likely to be closely related. By developing a mathematical model of HIV transmission, we show how these and other patterns arise as a simple consequence of intensified transmission during the early/acute stage of HIV infection, however observing these patterns is highly dependent on sampling a significant fraction of prevalent infections.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems.

          Approximate Bayesian computation (ABC) methods can be used to evaluate posterior distributions without having to calculate likelihoods. In this paper, we discuss and apply an ABC method based on sequential Monte Carlo (SMC) to estimate parameters of dynamical models. We show that ABC SMC provides information about the inferability of parameters and model sensitivity to changes in parameters, and tends to perform better than other ABC approaches. The algorithm is applied to several well-known biological systems, for which parameters and their credible intervals are inferred. Moreover, we develop ABC SMC as a tool for model selection; given a range of different mathematical descriptions, ABC SMC is able to choose the best model using the standard Bayesian model selection apparatus.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Estimated HIV Incidence in the United States, 2006–2009

            Background The estimated number of new HIV infections in the United States reflects the leading edge of the epidemic. Previously, CDC estimated HIV incidence in the United States in 2006 as 56,300 (95% CI: 48,200–64,500). We updated the 2006 estimate and calculated incidence for 2007–2009 using improved methodology. Methodology We estimated incidence using incidence surveillance data from 16 states and 2 cities and a modification of our previously described stratified extrapolation method based on a sample survey approach with multiple imputation, stratification, and extrapolation to account for missing data and heterogeneity of HIV testing behavior among population groups. Principal Findings Estimated HIV incidence among persons aged 13 years and older was 48,600 (95% CI: 42,400–54,700) in 2006, 56,000 (95% CI: 49,100–62,900) in 2007, 47,800 (95% CI: 41,800–53,800) in 2008 and 48,100 (95% CI: 42,200–54,000) in 2009. From 2006 to 2009 incidence did not change significantly overall or among specific race/ethnicity or risk groups. However, there was a 21% (95% CI:1.9%–39.8%; p = 0.017) increase in incidence for people aged 13–29 years, driven by a 34% (95% CI: 8.4%–60.4%) increase in young men who have sex with men (MSM). There was a 48% increase among young black/African American MSM (12.3%–83.0%; p<0.001). Among people aged 13–29, only MSM experienced significant increases in incidence, and among 13–29 year-old MSM, incidence increased significantly among young, black/African American MSM. In 2009, MSM accounted for 61% of new infections, heterosexual contact 27%, injection drug use (IDU) 9%, and MSM/IDU 3%. Conclusions/Significance Overall, HIV incidence in the United States was relatively stable 2006–2009; however, among young MSM, particularly black/African American MSM, incidence increased. HIV continues to be a major public health burden, disproportionately affecting several populations in the United States, especially MSM and racial and ethnic minorities. Expanded, improved, and targeted prevention is necessary to reduce HIV incidence.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genotypic and phenotypic characterization of HIV-1 patients with primary infection.

              Better characterization of human immunodeficiency virus-type 1 (HIV-1) in patients with primary infection has important implications for the development of an acquired immunodeficiency syndrome (AIDS) vaccine because vaccine strategies should target viral isolates with the properties of transmitted viruses. In five HIV-1 seroconverters, the viral phenotype was found to be uniformly macrophage-tropic and non-syncytium-inducing. Furthermore, the viruses were genotypically homogeneous within each patient, but a common signature sequence was not discernible among transmitted viruses. In the two cases where the sexual partners were also studied, the sequences of the transmitted viruses matched best with minor variants in the blood of the transmitters. There was also a stronger pressure to conserve sequences in gp120 than in gp41, nef, and p17, suggesting that a selective mechanism is involved in transmission.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                PLoS Comput. Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                June 2012
                June 2012
                28 June 2012
                : 8
                : 6
                : e1002552
                Affiliations
                [1 ]Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, United States of America
                [2 ]Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
                [3 ]Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
                Imperial College London, United Kingdom
                Author notes

                Conceived and designed the experiments: EMV SDWF. Performed the experiments: EMV. Analyzed the data: EMV SDWF. Contributed reagents/materials/analysis tools: EMV SDWF. Wrote the paper: EMV JSK MJW ALB SDWF.

                Article
                PCOMPBIOL-D-11-01435
                10.1371/journal.pcbi.1002552
                3386305
                22761556
                967bcbab-da7c-4305-8f95-5e742398228f
                Volz et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 27 September 2011
                : 24 April 2012
                Page count
                Pages: 10
                Categories
                Research Article
                Biology
                Evolutionary Biology
                Population Genetics
                Genetics
                Population Genetics
                Effective Population Size
                Mathematics
                Nonlinear Dynamics
                Medicine
                Epidemiology
                Infectious Disease Epidemiology

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article