+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tumor-Associated Macrophages in Tumor Immunity

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Tumor-associated macrophages (TAMs) represent one of the main tumor-infiltrating immune cell types and are generally categorized into either of two functionally contrasting subtypes, namely classical activated M1 macrophages and alternatively activated M2 macrophages. The former typically exerts anti-tumor functions, including directly mediate cytotoxicity and antibody-dependent cell-mediated cytotoxicity (ADCC) to kill tumor cells; the latter can promote the occurrence and metastasis of tumor cells, inhibit T cell-mediated anti-tumor immune response, promote tumor angiogenesis, and lead to tumor progression. Both M1 and M2 macrophages have high degree of plasticity and thus can be converted into each other upon tumor microenvironment changes or therapeutic interventions. As the relationship between TAMs and malignant tumors becoming clearer, TAMs have become a promising target for developing new cancer treatment. In this review, we summarize the origin and types of TAMs, TAMs interaction with tumors and tumor microenvironment, and up-to-date treatment strategies targeting TAMs.

          Related collections

          Most cited references 74

          • Record: found
          • Abstract: found
          • Article: not found

          Cancer-related inflammation.

          The mediators and cellular effectors of inflammation are important constituents of the local environment of tumours. In some types of cancer, inflammatory conditions are present before a malignant change occurs. Conversely, in other types of cancer, an oncogenic change induces an inflammatory microenvironment that promotes the development of tumours. Regardless of its origin, 'smouldering' inflammation in the tumour microenvironment has many tumour-promoting effects. It aids in the proliferation and survival of malignant cells, promotes angiogenesis and metastasis, subverts adaptive immune responses, and alters responses to hormones and chemotherapeutic agents. The molecular pathways of this cancer-related inflammation are now being unravelled, resulting in the identification of new target molecules that could lead to improved diagnosis and treatment.
            • Record: found
            • Abstract: found
            • Article: not found

            Macrophage activation and polarization: nomenclature and experimental guidelines.

            Description of macrophage activation is currently contentious and confusing. Like the biblical Tower of Babel, macrophage activation encompasses a panoply of descriptors used in different ways. The lack of consensus on how to define macrophage activation in experiments in vitro and in vivo impedes progress in multiple ways, including the fact that many researchers still consider there to be only two types of activated macrophages, often termed M1 and M2. Here, we describe a set of standards encompassing three principles-the source of macrophages, definition of the activators, and a consensus collection of markers to describe macrophage activation-with the goal of unifying experimental standards for diverse experimental scenarios. Collectively, we propose a common framework for macrophage-activation nomenclature. Copyright © 2014 Elsevier Inc. All rights reserved.
              • Record: found
              • Abstract: found
              • Article: not found

              Tumour-associated macrophages as treatment targets in oncology

              Tumour-associated macrophages (TAMs) are key drivers of tumour-promoting inflammation and cancer progression, and are important determinants of responsiveness to a range of therapies. Herein, the authors summarize the roles of TAMs in cancer, and discuss the potential of TAM-targeted therapeutic strategies to complement and synergize with other anticancer treatments.

                Author and article information

                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                03 December 2020
                : 11
                1Department of Radiation Oncology, Second Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou, Zhejiang, China
                2Institute of Immunology, School of Medicine, Zhejiang University , Hangzhou, Zhejiang, China
                Author notes

                Edited by: Xi Wang, Capital Medical University, China

                Reviewed by: Dong-Ming Kuang, Sun Yat-sen University, China; Yan Gu, National Key Laboratory of Immunology, China

                *Correspondence: Ting Zhang, zezht@ 123456zju.edu.cn

                This article was submitted to Cancer Immunity and Immunotherapy, a section of the journal Frontiers in Immunology

                Copyright © 2020 Pan, Yu, Wang and Zhang

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                Page count
                Figures: 2, Tables: 0, Equations: 0, References: 74, Pages: 9, Words: 3611


                Comment on this article