53
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Fundamental Molecules of Life are Pigments which Arose and Evolved to Dissipate the Solar Spectrum

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The driving force behind the origin and evolution of life has been the thermodynamic imperative of increasing the entropy production of the biosphere through increasing the global solar photon dissipation rate. In the upper atmosphere of today, oxygen and ozone derived from life processes are performing the short wavelength UVC and UVB dissipation. On Earth's surface, water and organic pigments in water facilitate the near UV and visible photon dissipation. The first organic pigments probably formed, absorbed, and dissipated at those photochemically active wavelengths in the UVC that could have reached Earth's surface during the Archean. Proliferation of these pigments can be understood as an autocatalytic photochemical process obeying non-equilibrium thermodynamic directives related to increasing solar photon dissipation rate. Under these directives, organic pigments would have evolved over time to increase the global photon dissipation rate by; 1) increasing the ratio of their effective photon cross sections to their physical size, 2) decreasing their electronic excited state life times, 3) quenching non-radiative de-excitation channels (e.g. fluorescence), 4) covering ever more completely the solar spectrum, and 5) dispersing into an ever greater surface area of Earth. From knowledge of the evolution of the spectrum of G-type stars, and considering the most probable history of the transparency of Earths atmosphere, we construct the most probable surface solar spectrum as a function of time and compare this with the history of molecular absorption maxima obtained from the available data in the literature. This comparison supports the thermodynamic dissipation theory for the origin of life, constrains models for Earth's early atmosphere, and sheds some new light on the origin of photosynthesis.

          Related collections

          Author and article information

          Journal
          1405.4059

          Biophysics
          Biophysics

          Comments

          Comment on this article