3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The degree profile and Gini index of random caterpillar trees

      Preprint
      ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this paper, we investigate the degree profile and Gini index of random caterpillar trees (RCTs). We consider RCTs which evolve in two different manners: uniform and nonuniform. The degrees of the vertices on the central path (i.e., the degree profile) of a uniform RCT follow a multinomial distribution. For nonuniform RCTs, we focus on those growing in the fashion of preferential attachment. We develop methods based on stochastic recurrences to compute the exact expectations and the dispersion matrix of the degree variables. A generalized P\'{o}lya urn model is exploited to determine the exact joint distribution of these degree variables. We apply the methods from combinatorics to prove that the asymptotic distribution is Dirichlet. In addition, we propose a new type of Gini index to quantitatively distinguish the evolutionary characteristics of the two classes of RCTs. We present the results via several numerical experiments.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Emergence of scaling in random networks

          Systems as diverse as genetic networks or the world wide web are best described as networks with complex topology. A common property of many large networks is that the vertex connectivities follow a scale-free power-law distribution. This feature is found to be a consequence of the two generic mechanisms that networks expand continuously by the addition of new vertices, and new vertices attach preferentially to already well connected sites. A model based on these two ingredients reproduces the observed stationary scale-free distributions, indicating that the development of large networks is governed by robust self-organizing phenomena that go beyond the particulars of the individual systems.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The Estimation of the Lorenz Curve and Gini Index

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              A note on the calculation and interpretation of the Gini index

                Bookmark

                Author and article information

                Journal
                15 May 2018
                Article
                1805.06328
                96a8896a-cff8-4c75-a89d-daa9517a9028

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                math.ST stat.CO stat.TH

                Statistics theory,Mathematical modeling & Computation
                Statistics theory, Mathematical modeling & Computation

                Comments

                Comment on this article