20
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ivermectin and COVID-19: Keeping Rigor in Times of Urgency

      editorial

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ivermectin is a widely used drug for the treatment and control of several neglected tropical diseases. 1 The drug has an excellent safety profile, with more than 2.5 billion doses distributed in the last 30 years, and its potential to reduce malaria transmission by killing mosquitoes is under evaluation in several trials around the world. 2 Ivermectin inhibits the in vitro replication of some positive, single-stranded RNA viruses, namely, dengue virus (DNV), 3–5 Zika virus, 4,6 yellow fever virus, 7,8 and others. 4,7,9 Caly et al. 10 recently reported that ivermectin is a potent inhibitor of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication in vitro. Given the coronavirus disease-19 (COVID-19) pandemic, this has understandably resonated widely in the global press. 11 Caly et al. 10 report a 5,000-fold reduction in SARS-CoV-2 RNA levels, compared with those in controls, after infected Vero/hSLAM cells were incubated for 48 hours with 5 μM ivermectin. The ivermectin IC50 for the virus was calculated at approximately 2.5 μM. These concentrations are the equivalent of 4,370 and 2,190 ng/mL, respectively, notably 50- to 100-fold the peak concentration (C max) achieved in plasma after the single dose of 200 μg/kg (14 mg in a 70-kg adult) commonly used for the control of onchocerchiasis. 12 Pharmacokinetic studies in healthy volunteers have suggested that single doses up to 120 mg of ivermectin can be safe and well tolerated. 13 However, even with this dose, which is 10-fold greater than those approved by the US Food and Drug Administration, the C max values reported were ∼250 ng/mL, 13 one order of magnitude lower than effective in vitro concentrations against SARS-CoV-2. These findings may seem to discourage follow-up clinical trials with ivermectin. However, some in vivo effect may be possible even if efficacious in vitro concentrations are physiologically unattainable. A recent phase III clinical trial in dengue patients in Thailand, in which a once-daily dose of 400 µg/kg for 3 days was found to be safe but did not produce any clinical benefit, 14 showed a modest and indirect in vivo effect against DNV. 14 Previous work by Wagstaff et al. 5 reported inhibition at much higher in vitro concentrations (25 µM) in DNV-infected Vero cells. Both pharmacokinetic considerations and the relatively long incubation period of DNV might explain the lack of clinical efficacy. Until we have a better understanding of ivermectin’s antiviral mode of action and of appropriate in vitro systems for testing, we caution against using findings in Vero cells as more than a qualitative indicator of potential efficacy. Very recently, preliminary findings on a potential effect of hydroxychloroquine combined with azithromycin against SARS-CoV-2 were widely publicized, 15 leading to a surge in demand and self-medication, which resulted in serious harm in some cases and a stock shortage that jeopardized drug availability for other critical conditions for which hydroxychloroquine or chloroquine is the standard of care, that is, vivax malaria, rheumatoid arthritis, and systemic lupus erythematosus. Efficacy claims for hydroxychloroquine against COVID-19 have been questioned in follow-up trials using similar dosing regimens, 16,17 and we await results of randomized, controlled clinical trials exploring treatment efficacy. We believe the recent findings regarding ivermectin warrant rapidly implemented controlled clinical trials to assess its efficacy against SARS-CoV-2. These trials may open a new field of research on the potential use of avermectin antiparasitic drugs, including compounds with an improved pharmacokinetic profile, as antivirals. 18 However, because of the following points, extreme due diligence and regulatory review are needed before testing ivermectin in severe disease. First, ivermectin, which targets glutamate-gated chlorine channels in invertebrates, may cross-target the GABA-gated chlorine channels present in the mammalian central nervous system (CNS) and cause neurotoxicity. 19 This is normally prevented by an intact blood–brain barrier (BBB), but in patients with a hyperinflammatory state, endothelial permeability at the BBB may be increased and cause leaking of drugs into the CNS, potentially causing harm. 20,21 Second, boosted antiretrovirals such as lopinavir/ritonavir and darunavir/cobicistat, which have been widely used against SARS-CoV-2 based on limited evidence, and a number of other drugs, are potent inhibitors of cytochrome P450 3A4, the main metabolic pathway for ivermectin. Concurrent use of these drugs will result in increased systemic exposure to ivermectin. Furthermore, ritonavir and cobicistat can readily inhibit one of the main efflux pumps in the BBB, P-glycoprotein, further favoring neurotoxicity. 22,23 However, it is encouraging that a recent analysis of ivermectin-related neurotoxic adverse events reported to the WHO Program for International Drug Monitoring found only one case of 1,668 reports in which concomitant use of antivirals was associated with neurotoxicity. 24 Third, as earlier, available evidence suggests that levels of ivermectin with meaningful activity against SARS-CoV-2 would not be achieved without extraordinary, potentially toxic increases in ivermectin dosing levels in humans. However, evidence from animal models showing up to 3-fold higher levels in pulmonary tissue than in plasma 1 week after oral dosing leaves the door open for further research, in particular for the treatment of respiratory viruses. 25,26 The discovery of ivermectin’s activity against SARS-CoV-2 gives reason for hope, but off-label and compassionate use requires careful risk–benefit considerations, 27 especially in critically ill patients. A path to consider is evaluation first of impacts on virologic outcomes in uncomplicated, low-risk patients early in the course of the disease. Well-conducted clinical trials informed by robust pharmacokinetic models should be considered to validate the impact before the use of ivermectin to treat SARS-CoV-2 is implemented.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial

          Background Chloroquine and hydroxychloroquine have been found to be efficient on SARS-CoV-2, and reported to be efficient in Chinese COV-19 patients. We evaluate the role of hydroxychloroquine on respiratory viral loads. Patients and methods French Confirmed COVID-19 patients were included in a single arm protocol from early March to March 16th, to receive 600mg of hydroxychloroquine daily and their viral load in nasopharyngeal swabs was tested daily in a hospital setting. Depending on their clinical presentation, azithromycin was added to the treatment. Untreated patients from another center and cases refusing the protocol were included as negative controls. Presence and absence of virus at Day6-post inclusion was considered the end point. Results Six patients were asymptomatic, 22 had upper respiratory tract infection symptoms and eight had lower respiratory tract infection symptoms. Twenty cases were treated in this study and showed a significant reduction of the viral carriage at D6-post inclusion compared to controls, and much lower average carrying duration than reported of untreated patients in the literature. Azithromycin added to hydroxychloroquine was significantly more efficient for virus elimination. Conclusion Despite its small sample size our survey shows that hydroxychloroquine treatment is significantly associated with viral load reduction/disappearance in COVID-19 patients and its effect is reinforced by azithromycin.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The FDA-approved Drug Ivermectin inhibits the replication of SARS-CoV-2 in vitro

            Although several clinical trials are now underway to test possible therapies, the worldwide response to the COVID-19 outbreak has been largely limited to monitoring/containment. We report here that Ivermectin, an FDA-approved anti-parasitic previously shown to have broad-spectrum anti-viral activity in vitro, is an inhibitor of the causative virus (SARS-CoV-2), with a single addition to Vero-hSLAM cells 2 hours post infection with SARS-CoV-2 able to effect ∼5000-fold reduction in viral RNA at 48 h. Ivermectin therefore warrants further investigation for possible benefits in humans.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              COVID-19–associated Acute Hemorrhagic Necrotizing Encephalopathy: CT and MRI Features

              Since its introduction to the human population in December 2019, the coronavirus disease 2019 (COVID-19) pandemic has spread across the world with over 330,000 reported cases in 190 countries (1). While patients typically present with fever, shortness of breath, and cough, neurologic manifestations have been reported, although to a much lesser extent (2). We report the first presumptive case of COVID-19–associated acute necrotizing hemorrhagic encephalopathy, a rare encephalopathy that has been associated with other viral infections but has yet to be demonstrated as a result of COVID-19 infection. A female airline worker in her late fifties presented with a 3-day history of cough, fever, and altered mental status. Initial laboratory work-up was negative for influenza, with the diagnosis of COVID-19 made by detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral nucleic acid in a nasopharyngeal swab specimen using the U.S. Centers for Disease Control and Prevention (CDC) 2019-Novel Coronavirus (2019-nCoV) Real-Time Reverse Transcriptase-Polymerase Chain Reaction assay. The assay was performed on a Roche thermocycler at our institution following “emergency use authorization” from the CDC. Cerebrospinal fluid (CSF) analysis was limited due to a traumatic lumbar puncture. However, CSF bacterial culture showed no growth after 3 days, and tests for herpes simplex virus 1 and 2, varicella zoster virus, and West Nile virus were negative. Testing for the presence of SARS-CoV-2 in the CSF was unable to be performed. Noncontrast head CT images demonstrated symmetric hypoattenuation within the bilateral medial thalami with a normal CT angiogram and CT venogram (Fig 1). Images from brain MRI demonstrated hemorrhagic rim enhancing lesions within the bilateral thalami, medial temporal lobes, and subinsular regions (Fig 2). The patient was started on intravenous immunoglobulin. High-dose steroids were not initiated due to concern for respiratory compromise. Figure 1a: A, Image from noncontrast head CT demonstrates symmetric hypoattenuation within the bilateral medial thalami (arrows). B, Axial CT venogram demonstrates patency of the cerebral venous vasculature, including the internal cerebral veins (arrows). C, Coronal reformat of aCT angiogram demonstrates normal appearance of the basilar artery and proximal posterior cerebral arteries. Figure 1b: A, Image from noncontrast head CT demonstrates symmetric hypoattenuation within the bilateral medial thalami (arrows). B, Axial CT venogram demonstrates patency of the cerebral venous vasculature, including the internal cerebral veins (arrows). C, Coronal reformat of aCT angiogram demonstrates normal appearance of the basilar artery and proximal posterior cerebral arteries. Figure 1c: A, Image from noncontrast head CT demonstrates symmetric hypoattenuation within the bilateral medial thalami (arrows). B, Axial CT venogram demonstrates patency of the cerebral venous vasculature, including the internal cerebral veins (arrows). C, Coronal reformat of aCT angiogram demonstrates normal appearance of the basilar artery and proximal posterior cerebral arteries. Figure 2a: MRI images demonstrate T2 FLAIR hyperintensity within the bilateral medial temporal lobes and thalami (A, B, E, F) with evidence of hemorrhage indicated by hypointense signal intensity on susceptibility-weighted images (C, G) and rim enhancement on postcontrast images (D, H). Figure 2b: MRI images demonstrate T2 FLAIR hyperintensity within the bilateral medial temporal lobes and thalami (A, B, E, F) with evidence of hemorrhage indicated by hypointense signal intensity on susceptibility-weighted images (C, G) and rim enhancement on postcontrast images (D, H). Figure 2c: MRI images demonstrate T2 FLAIR hyperintensity within the bilateral medial temporal lobes and thalami (A, B, E, F) with evidence of hemorrhage indicated by hypointense signal intensity on susceptibility-weighted images (C, G) and rim enhancement on postcontrast images (D, H). Figure 2d: MRI images demonstrate T2 FLAIR hyperintensity within the bilateral medial temporal lobes and thalami (A, B, E, F) with evidence of hemorrhage indicated by hypointense signal intensity on susceptibility-weighted images (C, G) and rim enhancement on postcontrast images (D, H). Figure 2e: MRI images demonstrate T2 FLAIR hyperintensity within the bilateral medial temporal lobes and thalami (A, B, E, F) with evidence of hemorrhage indicated by hypointense signal intensity on susceptibility-weighted images (C, G) and rim enhancement on postcontrast images (D, H). Figure 2f: MRI images demonstrate T2 FLAIR hyperintensity within the bilateral medial temporal lobes and thalami (A, B, E, F) with evidence of hemorrhage indicated by hypointense signal intensity on susceptibility-weighted images (C, G) and rim enhancement on postcontrast images (D, H). Figure 2g: MRI images demonstrate T2 FLAIR hyperintensity within the bilateral medial temporal lobes and thalami (A, B, E, F) with evidence of hemorrhage indicated by hypointense signal intensity on susceptibility-weighted images (C, G) and rim enhancement on postcontrast images (D, H). Figure 2h: MRI images demonstrate T2 FLAIR hyperintensity within the bilateral medial temporal lobes and thalami (A, B, E, F) with evidence of hemorrhage indicated by hypointense signal intensity on susceptibility-weighted images (C, G) and rim enhancement on postcontrast images (D, H). Acute necrotizing encephalopathy (ANE) is a rare complication of influenza and other viral infections and has been related to intracranial cytokine storms, which result in blood-brain-barrier breakdown, but without direct viral invasion or parainfectious demyelination (3). Accumulating evidence suggests that a subgroup of patients with severe COVID-19 might have a cytokine storm syndrome (4). While predominantly described in the pediatric population, ANE is known to occur in adults as well. The most characteristic imaging feature includes symmetric, multifocal lesions with invariable thalamic involvement (5). Other commonly involved locations include the brain stem, cerebral white matter, and cerebellum (5). Lesions appear hypoattenuating on CT images and MRI demonstrates T2 FLAIR hyperintense signal with internal hemorrhage. Postcontrast images may demonstrate a ring of contrast enhancement (5). This is the first reported case of COVID-19–associated acute necrotizing hemorrhagic encephalopathy. As the number of patients with COVID-19 increases worldwide, clinicians and radiologists should be watching for this presentation among patients presenting with COVID-19 and altered mental status.
                Bookmark

                Author and article information

                Journal
                Am J Trop Med Hyg
                Am. J. Trop. Med. Hyg
                tpmd
                tropmed
                The American Journal of Tropical Medicine and Hygiene
                The American Society of Tropical Medicine and Hygiene
                0002-9637
                1476-1645
                June 2020
                16 April 2020
                16 April 2020
                : 102
                : 6
                : 1156-1157
                Affiliations
                [1 ]ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain;
                [2 ]Ifakara Health Institute, Ifakara, United Republic of Tanzania;
                [3 ]Facultad de Medicina, Universidad de Navarra, Pamplona, Spain;
                [4 ]Department of General Internal Medicine, Clinical Pharmacology and Toxicology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland;
                [5 ]Research & Development Agency of Aragon (ARAID) Foundation, Zaragoza, Spain;
                [6 ]Department of Microbiology, Mycobacterial Genetics Group, Preventive Medicine and Public Health, Faculty of Medicine, University of Zaragoza, Zaragoza, Spain;
                [7 ]Harvard T.H. Chan School of Public Health, Boston, Massachusetts
                Author notes
                [* ]Address correspondence to Carlos Chaccour, ISGlobal, Hospital Clínic - Universitat de Barcelona, Rosello 132, 5 a 2 a, Barcelona 08036, Spain. E-mail: carlos.chaccour@ 123456isglobal.org

                Authors’ addresses: Carlos Chaccour, ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain, Ifakara Health Institute, Ifakara, United Republic of Tanzania, and Facultad de Medicina, Universidad de Navarra, Pamplona, Spain, E-mail: carlos.chaccour@ 123456isglobal.org . Felix Hammann, Department of General Internal Medicine, Clinical Pharmacology and Toxicology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland, E-mail: felix.hammann@ 123456insel.ch . Santiago Ramón-García, Research & Development Agency of Aragon (ARAID) Foundation, Spain and Department of Microbiology, Mycobacterial Genetics Group, Preventive Medicine and Public Health, Faculty of Medicine, University of Zaragoza, Spain, E-mail: santiramon@ 123456unizar.es . N. Regina Rabinovich, ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain and Harvard T.H. Chan School of Public Health, Boston, MA, E-mail: rrabinov@ 123456hsph.harvard.edu .

                Article
                tpmd200271
                10.4269/ajtmh.20-0271
                7253113
                32314704
                96ceb68d-4d44-42ab-b4ca-41cd88a3ba34
                © The American Society of Tropical Medicine and Hygiene

                This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 08 April 2020
                : 10 April 2020
                Page count
                Pages: 2
                Categories
                Editorial

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article