13
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      International Journal of Nanomedicine (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the application of nanotechnology in diagnostics, therapeutics, and drug delivery systems throughout the biomedical field. Sign up for email alerts here.

      105,621 Monthly downloads/views I 7.033 Impact Factor I 10.9 CiteScore I 1.22 Source Normalized Impact per Paper (SNIP) I 1.032 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nanocalcium-deficient hydroxyapatite–poly (ɛ-caprolactone)–polyethylene glycol–poly (ɛ-caprolactone) composite scaffolds

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A bioactive composite of nano calcium-deficient apatite (n-CDAP) with an atom molar ratio of calcium to phosphate (Ca/P) of 1.50 and poly(ɛ-caprolactone)–poly(ethylene glycol)–poly(ɛ-caprolactone) (PCL–PEG–PCL) was synthesized, and a composite scaffold was fabricated. The composite scaffolds with 40 wt% n-CDAP contained well interconnected macropores around 400 μm, and exhibited a porosity of 75%. The weight-loss ratio of the n-CDAP/PCL–PEG–PCL was significantly greater than nano hydroxyapatite (n-HA, Ca/P = 1.67)/PCL–PEG–PCL composite scaffolds during soaking into phosphate-buffered saline (pH 7.4) for 70 days, indicating that n-CDAP-based composite had good degradability compared with n-HA. The viability ratio of MG-63 cells was significantly higher on n-CDAP than n-HA-based composite scaffolds at 3 and 5 days. In addition, the alkaline phosphatase activity of the MG-63 cells cultured on n-CDAP was higher than n-HA-based composite scaffolds at 7 days. Histological evaluation showed that the introduction of n-CDAP into PCL–PEG–PCL enhanced the efficiency of new bone formation when the composite scaffolds were implanted into rabbit bone defects. The results suggested that the n-CDAP-based composite exhibits good biocompatibility, biodegradation, and osteogenesis in vivo.

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Nanosized and nanocrystalline calcium orthophosphates.

          Recent developments in biomineralization have already demonstrated that nanosized crystals and particles play an important role in the formation of hard tissues of animals. Namely, it is well established that the basic inorganic building blocks of bones and teeth of mammals are nanosized and nanocrystalline calcium orthophosphates in the form of apatites. In mammals, tens to hundreds nanocrystals of a biological apatite have been found to be combined into self-assembled structures under the control of bioorganic matrixes. Therefore, application and prospective use of the nanosized and nanocrystalline calcium orthophosphates for a clinical repair of damaged bones and teeth are also well known. For example, greater viability and better proliferation of various types of cells have been detected on smaller crystals of calcium orthophosphates. Thus, the nanosized and nanocrystalline forms of calcium orthophosphates have great potential to revolutionize the hard tissue-engineering field, starting from bone repair and augmentation to controlled drug delivery systems. This paper reviews the current state of art and recent developments of various nanosized and nanocrystalline calcium orthophosphates, starting from synthesis and characterization to biomedical and clinical applications. The review also provides possible directions for future research and development. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics.

            With respect to the effect of material factors on calcium phosphate biomaterial-induced osteogenesis, the osteoinductive property of two kinds of porous hydroxyapatite ceramics, which were made by different producers, was investigated in dorsal muscles of dogs. One hydroxyapatite ceramic (S-HA), macroporous implants with rough pore walls containing abundant micropores, was made by Sichuan Union University (Chengdu, China); the other hydroxyapatite ceramic (J-HA), porous implants with smooth macropore walls composed of regularly aligned crystal grains, was provided by Mitsubishi Ceramic Int. (Japan). Different tissue response was detected histologically and microradiographically after the ceramic samples had been implanted in dorsal muscles of dogs for 3 and 6 months. Bone formation was found in S-HA at 3 months, which increased at 6 months. In contrast, no bone formation was detected in J-HA at both 3 and 6 months. These results indicate that with the special architecture, calcium phosphate ceramic can induce bone formation in soft tissue. As both materials were very similar in their chemical and crystallographic structures, but varied in their microstructures, the latter seem to be an important factor affecting the osteoinductive capacity of calcium phosphate ceramics. These data suggest that, by controlling the preparation of calcium phosphate ceramic, bone substitutes with intrinsic osteoinductive property can be developed from calcium phosphates.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The fabrication of nano-hydroxyapatite on PLGA and PLGA/collagen nanofibrous composite scaffolds and their effects in osteoblastic behavior for bone tissue engineering.

              Bone is a nanocomposite consisting of two main components, nano-hydroxyapatite (n-HA) and Type I collagen (Col). The aim is to exploit the nano-scale functional and material characteristics of natural bone in order to modulate cellular functions for optimal bone repair in bone graft systems. Here, we present an effective and novel technique in obtaining n-HA in cognate with native apatite on electrospun nanofibers within minutes without any pre-treatment. Using an alternate calcium and phosphate (Ca-P) solution dipping method, n-HA was formed on poly(lactide-co-glycolide) acid (PLGA) and blended PLGA/Col nanofibers. The presence of the functional groups of collagen significantly hastened n-HA deposition closed to nine-fold. The quantity of n-HA impinged upon the specific surface area, whereby mineralized PLGA/Col had a greater surface area than non-mineralized PLGA/Col, whereas n-HA did not significantly improve the specific surface area of mineralized PLGA compared to pure PLGA. The novelty of the process was that n-HA on PLGA had a positive modulation on early osteoblast capture (within minutes) compared to pure PLGA. Contrary, cell capture on mineralized PLGA/Col was comparable to pure PLGA/Col. Interestingly, although n-HA impeded proliferation during the culture period (days 1, 4 and 7), the cell functionality such as alkaline phosphatase (ALP) and protein expressions were ameliorated on mineralized nanofibers. The amount of n-HA appeared to have a greater effect on the early stages of osteoblast behavior (cell attachment and proliferation) rather than the immediate/late stages (proliferation and differentiation).
                Bookmark

                Author and article information

                Journal
                Int J Nanomedicine
                Int J Nanomedicine
                International Journal of Nanomedicine
                Dove Medical Press
                1176-9114
                1178-2013
                2012
                2012
                10 July 2012
                : 7
                : 3123-3131
                Affiliations
                Department of Orthopedics, Shanghai Hospital, Second Military Medical University, Shanghai, People’s Republic of China
                Author notes
                Correspondence: Jiacan Su, Department of Orthopedics, Shanghai Hospital, Second Military Medical University, Shanghai 200433, People’s Republic of China, Tel +86 21 8187 3400, Fax +86 21 8187 3398, Email jiacansu2012@ 123456yahoo.cn
                [*]

                These authors contributed equally to this work

                Article
                ijn-7-3123
                10.2147/IJN.S31162
                3405873
                22848159
                96d92281-5976-4e83-a764-d16e62bddaf7
                © 2012 Wang et al, publisher and licensee Dove Medical Press Ltd.

                This is an Open Access article which permits unrestricted noncommercial use, provided the original work is properly cited.

                History
                Categories
                Original Research

                Molecular medicine
                composite scaffold,nano calcium-deficient apatite,cell responses,degradability,osteogenesis

                Comments

                Comment on this article