11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Combined Anti-Cancer Strategies Based on Anti-Checkpoint Inhibitor Antibodies

      review-article
      1 , 2 , * , 3
      Antibodies
      MDPI
      therapeutic antibodies, immune checkpoint inhibitors, cancer, microenvironment

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Therapeutic monoclonal antibodies for the treatment of cancer came of age in 1997, with the approval of anti-CD20 Rituximab. Since then, a wide variety of antibodies have been developed with many different formats and mechanisms of action. Among these, antibodies blocking immune checkpoint inhibitors (ICI) have revolutionized the field, based on the novelty of their concept and their demonstrated efficacy in several types of cancer otherwise lacking effective immunotherapy approaches. ICI are expressed by tumor, stromal or immune cells infiltrating the tumor microenvironment, and negatively regulate anti-tumor immunity. Antibodies against the first discovered ICI, CTLA-4, PD-1 and PD-L1, have shown significant activity in phase III studies against melanoma and other solid cancers, alone or in combination with chemotherapy or radiotherapy. However, not all cancers and not all patients respond to these drugs. Therefore, novel antibodies targeting additional ICI are currently being developed. In addition, CTLA-4, PD-1 and PD-L1 blocking antibodies are being combined with each other or with other antibodies targeting novel ICI, immunostimulatory molecules, tumor antigens, angiogenic factors, complement receptors, or with T cell engaging bispecific antibodies (BsAb), with the aim of obtaining synergistic effects with minimal toxicity. In this review, we summarize the biological aspects behind such combinations and review some of the most important clinical data on ICI-specific antibodies.

          Related collections

          Most cited references103

          • Record: found
          • Abstract: found
          • Article: not found

          The blockade of immune checkpoints in cancer immunotherapy.

          Among the most promising approaches to activating therapeutic antitumour immunity is the blockade of immune checkpoints. Immune checkpoints refer to a plethora of inhibitory pathways hardwired into the immune system that are crucial for maintaining self-tolerance and modulating the duration and amplitude of physiological immune responses in peripheral tissues in order to minimize collateral tissue damage. It is now clear that tumours co-opt certain immune-checkpoint pathways as a major mechanism of immune resistance, particularly against T cells that are specific for tumour antigens. Because many of the immune checkpoints are initiated by ligand-receptor interactions, they can be readily blocked by antibodies or modulated by recombinant forms of ligands or receptors. Cytotoxic T-lymphocyte-associated antigen 4 (CTLA4) antibodies were the first of this class of immunotherapeutics to achieve US Food and Drug Administration (FDA) approval. Preliminary clinical findings with blockers of additional immune-checkpoint proteins, such as programmed cell death protein 1 (PD1), indicate broad and diverse opportunities to enhance antitumour immunity with the potential to produce durable clinical responses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints

            Despite compelling antitumour activity of antibodies targeting the programmed death 1 (PD-1): programmed death ligand 1 (PD-L1) immune checkpoint in lung cancer, resistance to these therapies has increasingly been observed. In this study, to elucidate mechanisms of adaptive resistance, we analyse the tumour immune microenvironment in the context of anti-PD-1 therapy in two fully immunocompetent mouse models of lung adenocarcinoma. In tumours progressing following response to anti-PD-1 therapy, we observe upregulation of alternative immune checkpoints, notably T-cell immunoglobulin mucin-3 (TIM-3), in PD-1 antibody bound T cells and demonstrate a survival advantage with addition of a TIM-3 blocking antibody following failure of PD-1 blockade. Two patients who developed adaptive resistance to anti-PD-1 treatment also show a similar TIM-3 upregulation in blocking antibody-bound T cells at treatment failure. These data suggest that upregulation of TIM-3 and other immune checkpoints may be targetable biomarkers associated with adaptive resistance to PD-1 blockade.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Anti-NKG2A mAb Is a Checkpoint Inhibitor that Promotes Anti-tumor Immunity by Unleashing Both T and NK Cells

              Summary Checkpoint inhibitors have revolutionized cancer treatment. However, only a minority of patients respond to these immunotherapies. Here, we report that blocking the inhibitory NKG2A receptor enhances tumor immunity by promoting both natural killer (NK) and CD8+ T cell effector functions in mice and humans. Monalizumab, a humanized anti-NKG2A antibody, enhanced NK cell activity against various tumor cells and rescued CD8+ T cell function in combination with PD-x axis blockade. Monalizumab also stimulated NK cell activity against antibody-coated target cells. Interim results of a phase II trial of monalizumab plus cetuximab in previously treated squamous cell carcinoma of the head and neck showed a 31% objective response rate. Most common adverse events were fatigue (17%), pyrexia (13%), and headache (10%). NKG2A targeting with monalizumab is thus a novel checkpoint inhibitory mechanism promoting anti-tumor immunity by enhancing the activity of both T and NK cells, which may complement first-generation immunotherapies against cancer.
                Bookmark

                Author and article information

                Journal
                Antibodies (Basel)
                Antibodies (Basel)
                antibodies
                Antibodies
                MDPI
                2073-4468
                20 May 2020
                June 2020
                : 9
                : 2
                : 17
                Affiliations
                [1 ]Center of Cellular Therapy “G. Lanzani”, UOC Ematologia, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, 24127 Bergamo, Italy
                [2 ]Fondazione per la Ricerca Ospedale Maggiore, 24127 Bergamo, Italy
                [3 ]Laboratoire de Biochimie et Thérapies Moléculaires, Faculté de Pharmacie, Université Saint Joseph de Beyrouth, Beirut 1100, Lebanon; alain.andrea@ 123456net.usj.edu.lb
                Author notes
                Author information
                https://orcid.org/0000-0002-7932-909X
                https://orcid.org/0000-0001-8177-2640
                Article
                antibodies-09-00017
                10.3390/antib9020017
                7345008
                32443877
                96dbb91a-65be-4e8f-b8e7-f9a452e1c1fc
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 20 April 2020
                : 12 May 2020
                Categories
                Review

                therapeutic antibodies,immune checkpoint inhibitors,cancer,microenvironment

                Comments

                Comment on this article