10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Philodryas (Serpentes: Dipsadidae) Envenomation, A Neglected Issue in Chile

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Snakebite envenomation is considered a neglected tropical disease, although it also occurs outside the tropics. In this work, we analyzed the literature on Philodryas species in Chile ( Philodryas chamissonis, P. simonsii, and P. tachymenoides) from 1834 to 2019, searching for epidemiological, clinical, and molecular aspects of envenomation. Ninety-one percent of the studies found regarded taxonomy, ecology, and natural history, suggesting that snakebites and venom toxins are a neglected issue in Chile. All snakebite cases reported and toxicological studies concerned the species Philodryas chamissonis. Using 185 distributional records from the literature and museum collections for this species, we show for the first time that the reported snakebite cases correlate with human population density, occurring in the Valparaiso and Metropolitan regions in Central Chile. The reduced number of snakebite cases, which were previously considered as having a low incidence in Chile, may be a consequence of under-reported cases, probably due to the inadequate publication or scarce research on this issue. Absence of information about official pharmacological treatment, post-envenoming sequels, clinical management of particular patient groups (e.g., with non-communicable diseases, pregnant women, and the elderly) was also detected. In conclusion, despite having over 185 years of literature on Chilean snakes, knowledge on the envenomation of Philodryas genus remains scarce, seriously affecting adequate medical handling during an ophidic accident. This review highlights the need to develop deep research in this area and urgent improvements to the management of this disease in Chile.

          Related collections

          Most cited references90

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Vulnerability to snakebite envenoming: a global mapping of hotspots

          Summary Background Snakebite envenoming is a frequently overlooked cause of mortality and morbidity. Data for snake ecology and existing snakebite interventions are scarce, limiting accurate burden estimation initiatives. Low global awareness stunts new interventions, adequate health resources, and available health care. Therefore, we aimed to synthesise currently available data to identify the most vulnerable populations at risk of snakebite, and where additional data to manage this global problem are needed. Methods We assembled a list of snake species using WHO guidelines. Where relevant, we obtained expert opinion range (EOR) maps from WHO or the Clinical Toxinology Resources. We also obtained occurrence data for each snake species from a variety of websites, such as VertNet and iNaturalist, using the spocc R package (version 0.7.0). We removed duplicate occurrence data and categorised snakes into three groups: group A (no available EOR map or species occurrence records), group B (EOR map but <5 species occurrence records), and group C (EOR map and ≥5 species occurrence records). For group C species, we did a multivariate environmental similarity analysis using the 2008 WHO EOR maps and newly available evidence. Using these data and the EOR maps, we produced contemporary range maps for medically important venomous snake species at a 5 × 5 km resolution. We subsequently triangulated these data with three health system metrics (antivenom availability, accessibility to urban centres, and the Healthcare Access and Quality [HAQ] Index) to identify the populations most vulnerable to snakebite morbidity and mortality. Findings We provide a map showing the ranges of 278 snake species globally. Although about 6·85 billion people worldwide live within range of areas inhabited by snakes, about 146·70 million live within remote areas lacking quality health-care provisioning. Comparing opposite ends of the HAQ Index, 272·91 million individuals (65·25%) of the population within the lowest decile are at risk of exposure to any snake for which no effective therapy exists compared with 519·46 million individuals (27·79%) within the highest HAQ Index decile, showing a disproportionate coverage in reported antivenom availability. Antivenoms were available for 119 (43%) of 278 snake species evaluated by WHO, while globally 750·19 million (10·95%) of those living within snake ranges live more than 1 h from population centres. In total, we identify about 92·66 million people living within these vulnerable geographies, including many sub-Saharan countries, Indonesia, and other parts of southeast Asia. Interpretation Identifying exact populations vulnerable to the most severe outcomes of snakebite envenoming at a subnational level is important for prioritising new data collection and collation, reinforcing envenoming treatment, existing health-care systems, and deploying currently available and future interventions. These maps can guide future research efforts on snakebite envenoming from both ecological and public health perspectives and better target future estimates of the burden of this neglected tropical disease. Funding Bill & Melinda Gates Foundation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Structure and function of snake venom cysteine-rich secretory proteins.

            Cysteine-rich secretory proteins (CRISPs) are primarily found in the epididymis of mammals and are expressed in diverse organisms. However, the functions of most CRISPs remain unknown. Recent studies reveal that CRISPs are widely distributed in snake venoms and that they inhibit smooth muscle contraction and cyclic nucleotide-gated ion channels. In this review, we discuss recent findings on several snake venom-derived CRISPs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Epidemiological, clinical and therapeutic aspects of Bothrops asper bites.

              Bothrops asper inflicts the majority of snakebites in Central America and in the northern regions of South America, mostly affecting young agricultural workers in rural settings. This species is capable of provoking severe envenomings associated with local and systemic manifestations. The main clinical features are: local edema, ecchymoses, blisters, dermonecrosis, myonecrosis, defibrinogenation, thrombocytopenia, systemic bleeding, hypotension and renal alterations. In addition, soft-tissue infection, acute renal failure, compartmental syndrome, central nervous system hemorrhage and, in pregnant women, abortion, fetal wastage and abruptio placentae have been described as complications. Intravenous administration of antivenom constitutes the mainstay in the therapy. Antivenoms composed of either whole IgG or F(ab')(2) fragments, manufactured in Brazil, Colombia, Costa Rica and Mexico, have been tested in controlled clinical trials, and rational protocols for antivenom administration have been developed. In addition to antivenom therapy, a number of ancillary interventions are recommended in the treatment of B. asper bites.
                Bookmark

                Author and article information

                Journal
                Toxins (Basel)
                Toxins (Basel)
                toxins
                Toxins
                MDPI
                2072-6651
                29 November 2019
                December 2019
                : 11
                : 12
                : 697
                Affiliations
                [1 ]Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia 1027, Casilla 7, Santiago 7800003, Chile
                [2 ]Network for Snake Venom Research and Drug Discovery, Santiago 7800003, Chile; raraya@ 123456utalca.cl
                [3 ]Área de Herpetología, Colección Boliviana de Fauna, c. 27 de Cota Cota, La Paz 10077, Bolivia; abrunomirandac@ 123456gmail.com
                [4 ]Instituto de Química de Recursos Naturales, Universidad de Talca, Casilla 747, Talca 3460000, Chile
                [5 ]Programa de Investigación Asociativa en Cáncer Gástrico, Universidad de Talca, Casilla 747, Talca 3460000, Chile
                Author notes
                [* ]Correspondence: felixurraf@ 123456u.uchile.cl ; Tel.: +56-22-978-6066
                Author information
                https://orcid.org/0000-0001-8582-4399
                https://orcid.org/0000-0002-5082-9146
                Article
                toxins-11-00697
                10.3390/toxins11120697
                6950111
                31795440
                96e0555b-79d4-4b31-9211-432f6ee0c338
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 01 November 2019
                : 23 November 2019
                Categories
                Review

                Molecular medicine
                snakebite,opisthoglyphous,philodryas,toxins,colubrid,therapeutics
                Molecular medicine
                snakebite, opisthoglyphous, philodryas, toxins, colubrid, therapeutics

                Comments

                Comment on this article