10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Plasma Levels of Middle Molecules to Estimate Residual Kidney Function in Haemodialysis without Urine Collection

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Residual Kidney Function (RKF) is associated with survival benefits in haemodialysis (HD) but is difficult to measure without urine collection. Middle molecules such as Cystatin C and β2-microglobulin accumulate in renal disease and plasma levels have been used to estimate kidney function early in this condition. We investigated their use to estimate RKF in patients on HD.

          Design

          Cystatin C, β2-microglobulin, urea and creatinine levels were studied in patients on incremental high-flux HD or hemodiafiltration(HDF). Over sequential HD sessions, blood was sampled pre- and post-session 1 and pre-session 2, for estimation of these parameters. Urine was collected during the whole interdialytic interval, for estimation of residual GFR (GFR Residual = mean of urea and creatinine clearance). The relationships of plasma Cystatin C and β2-microglobulin levels to GFR Residual and urea clearance were determined.

          Results

          Of the 341 patients studied, 64% had urine output>100ml/day, 32.6% were on high-flux HD and 67.4% on HDF. Parameters most closely correlated with GFR Residual were 1/β2-micoglobulin (r 2 0.67) and 1/Cystatin C (r 2 0.50). Both these relationships were weaker at low GFR Residual. The best regression model for GFR Residual, explaining 67% of the variation, was:

          Where β2m is the pre-dialysis β2 microglobulin concentration (mg/L). This model was validated in a separate cohort of 50 patients using Bland-Altman analysis. Areas under the curve in Receiver Operating Characteristic analysis aimed at identifying subjects with urea clearance≥2ml/min/1.73m 2 was 0.91 for β2-microglobulin and 0.86 for Cystatin C. A plasma β2-microglobulin cut-off of ≤19.2mg/L allowed identification of patients with urea clearance ≥2ml/min/1.73m 2 with 90% specificity and 65% sensitivity.

          Conclusion

          Plasma pre-dialysis β2-microglobulin levels can provide estimates of RKF which may have clinical utility and appear superior to cystatin C. Use of cut-off levels to identify patients with RKF may provide a simple way to individualise dialysis dose based on RKF.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Estimating GFR using serum cystatin C alone and in combination with serum creatinine: a pooled analysis of 3,418 individuals with CKD.

          Serum cystatin C was proposed as a potential replacement for serum creatinine in glomerular filtration rate (GFR) estimation. We report the development and evaluation of GFR-estimating equations using serum cystatin C alone and serum cystatin C, serum creatinine, or both with demographic variables. Test of diagnostic accuracy. Participants screened for 3 chronic kidney disease (CKD) studies in the United States (n = 2,980) and a clinical population in Paris, France (n = 438). Measured GFR (mGFR). Estimated GFR using the 4 new equations based on serum cystatin C alone, serum cystatin C, serum creatinine, or both with age, sex, and race. New equations were developed by using linear regression with log GFR as the outcome in two thirds of data from US studies. Internal validation was performed in the remaining one third of data from US CKD studies; external validation was performed in the Paris study. GFR was measured by using urinary clearance of iodine-125-iothalamate in the US studies and chromium-51-EDTA in the Paris study. Serum cystatin C was measured by using Dade-Behring assay, standardized serum creatinine values were used. Mean mGFR, serum creatinine, and serum cystatin C values were 48 mL/min/1.73 m(2) (5th to 95th percentile, 15 to 95), 2.1 mg/dL, and 1.8 mg/L, respectively. For the new equations, coefficients for age, sex, and race were significant in the equation with serum cystatin C, but 2- to 4-fold smaller than in the equation with serum creatinine. Measures of performance in new equations were consistent across the development and internal and external validation data sets. Percentages of estimated GFR within 30% of mGFR for equations based on serum cystatin C alone, serum cystatin C, serum creatinine, or both levels with age, sex, and race were 81%, 83%, 85%, and 89%, respectively. The equation using serum cystatin C level alone yields estimates with small biases in age, sex, and race subgroups, which are improved in equations including these variables. Study population composed mainly of patients with CKD. Serum cystatin C level alone provides GFR estimates that are nearly as accurate as serum creatinine level adjusted for age, sex, and race, thus providing an alternative GFR estimate that is not linked to muscle mass. An equation including serum cystatin C level in combination with serum creatinine level, age, sex, and race provides the most accurate estimates.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Relative contribution of residual renal function and peritoneal clearance to adequacy of dialysis: a reanalysis of the CANUSA study.

            Studies of the adequacy of peritoneal dialysis and recommendations have assumed that renal and peritoneal clearances are comparable and therefore additive. The CANUSA data were reanalyzed in an effort to address this assumption. Among the 680 patients in the original CANUSA study, 601 had all of the variables of interest for this report. Adequacy of dialysis was estimated from GFR (mean of renal urea and creatinine clearance) and from peritoneal creatinine clearance. The Cox proportional-hazards model was used to evaluate the time-dependent association of these independent variables with patient survival. For each 5 L/wk per 1.73 m(2) increment in GFR, there was a 12% decrease in the relative risk (RR) of death (RR, 0.88; 95% confidence interval [CI], 0.83 to 0.94) but no association with peritoneal creatinine clearance (RR, 1.00; 95% CI, 0.90 to 1.10). Estimates of fluid removal (24-h urine volume, net peritoneal ultrafiltration, and total fluid removal) then were added to the Cox model. For a 250-ml increment in urine volume, there was a 36% decrease in the RR of death (RR, 0.64; 95% CI, 0.51 to 0.80). The association of patient survival with GFR disappeared (RR, 0.99; 95% CI, 0.94 to 1.04). However, neither net peritoneal ultrafiltration nor total fluid removal was associated with patient survival. Although these results may be explained partly, statistically, by less variability in peritoneal clearance than in GFR, the latter seems to be physiologically more important than the former. The assumption of equivalence of peritoneal and renal clearances is not supported by these data. Recommendations for adequate peritoneal dialysis need to be reevaluated in light of these observations.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Clinical practice guidelines for hemodialysis adequacy, update 2006.

              (2006)
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                2 December 2015
                2015
                : 10
                : 12
                : e0143813
                Affiliations
                [1 ]Renal Unit, Lister Hospital, Hertfordshire, Stevenage, United Kingdom
                [2 ]Department of Postgraduate Medicine, University of Hertfordshire, United Kingdom
                [3 ]Department of Pathology, Lister Hospital, Stevenage, United Kingdom
                [4 ]University of the West of England, Bristol, United Kingdom
                Medical University of Graz, AUSTRIA
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: EV JW AV KF. Performed the experiments: EV CB JW AM AU. Analyzed the data: EV KF. Contributed reagents/materials/analysis tools: CB AV EV KF. Wrote the paper: EV KF.

                Article
                PONE-D-15-31706
                10.1371/journal.pone.0143813
                4668015
                26629900
                96e67529-cb36-4ffe-b533-e0ca3ef5621e
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 13 August 2015
                : 10 November 2015
                Page count
                Figures: 4, Tables: 6, Pages: 17
                Funding
                This work was supported by the British Renal Society Grant, 9th Round Awards for EV. ( http://www.britishrenal.org/getattachment/Research-for-Renal/Grants-Awarded/Summary-of-9th-Round-BRS-Grant-Awards-(2).doc.aspx) Funders reviewed the study design as part of the peer-review process for grant application but had no role in data collection, analysis, decision to publish or manuscript preparation. This work was also supported by the Kidney Research UK ( www.kidneyresearchuk.org) funded EV (Fellowship TF9/2010). The funder had no role in the study design, data collection, analysis, decision to publish or preparation of the manuscript. Support was received through the National Institute for Health Research through the Renal Research Network. The funder had no role in the study design, data collection, analysis, decision to publish or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                All relevant data are in the Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article