13
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Publish your biodiversity research with us!

      Submit your article here.

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Non-native freshwater fishes in Guatemala, northern Central America: introduction sources, distribution, history, and conservation consequences

      , , ,
      Neotropical Biology and Conservation
      Pensoft Publishers

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Non-native freshwater fishes have been introduced to Guatemalan freshwater ecosystems since the beginning of the last century without prior risk assessment or subsequent evaluation of their impacts. We synthesized historical records, and distributional data from a literature review, online databases and museum records of non-native freshwater fishes in Guatemala. We found records for 22 non-native freshwater fishes with the oldest records dating back to 1926. Non-native freshwater fishes were recorded in 64% of the river sub-basins in Guatemala and we identified that at least 12 species have established populations. The Jaguar guapote (Parachromis managuensis) and Tilapias (Oreochromis spp.) are the most widespread non-native fishes. The species of non-native freshwater fishes introduced indicates that they are human selected (e.g., for farming purposes). Our work shows that aquaculture has been the major driver of introductions in the country, but aquarium release has become an important source in the last 20 years. Given the potential impact of non-native freshwater fishes on native fauna and ecosystems, we highlight an urgent need to assess their ecological effects, as well as to establish a fish fauna monitoring program in Guatemala to detect new introductions. Government and non-governmental agencies should promote the use of native species to supply fish demands in alignment with environmental policies and the objectives of the fishing agency in Guatemala.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          Global biodiversity scenarios for the year 2100.

          Scenarios of changes in biodiversity for the year 2100 can now be developed based on scenarios of changes in atmospheric carbon dioxide, climate, vegetation, and land use and the known sensitivity of biodiversity to these changes. This study identified a ranking of the importance of drivers of change, a ranking of the biomes with respect to expected changes, and the major sources of uncertainties. For terrestrial ecosystems, land-use change probably will have the largest effect, followed by climate change, nitrogen deposition, biotic exchange, and elevated carbon dioxide concentration. For freshwater ecosystems, biotic exchange is much more important. Mediterranean climate and grassland ecosystems likely will experience the greatest proportional change in biodiversity because of the substantial influence of all drivers of biodiversity change. Northern temperate ecosystems are estimated to experience the least biodiversity change because major land-use change has already occurred. Plausible changes in biodiversity in other biomes depend on interactions among the causes of biodiversity change. These interactions represent one of the largest uncertainties in projections of future biodiversity change.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A proposed unified framework for biological invasions.

            There has been a dramatic growth in research on biological invasions over the past 20 years, but a mature understanding of the field has been hampered because invasion biologists concerned with different taxa and different environments have largely adopted different model frameworks for the invasion process, resulting in a confusing range of concepts, terms and definitions. In this review, we propose a unified framework for biological invasions that reconciles and integrates the key features of the most commonly used invasion frameworks into a single conceptual model that can be applied to all human-mediated invasions. The unified framework combines previous stage-based and barrier models, and provides a terminology and categorisation for populations at different points in the invasion process. Copyright © 2011 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Global river hydrography and network routing: baseline data and new approaches to study the world's large river systems

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Neotropical Biology and Conservation
                NBC
                Pensoft Publishers
                2236-3777
                March 21 2022
                March 21 2022
                : 17
                : 1
                : 59-85
                Article
                10.3897/neotropical.17.e80062
                96f8dd07-c22e-4d13-95d6-db383c474d8e
                © 2022

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article