Blog
About

4
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      What you eat is what you get: Novel Campylobacter models in the quadrangle relationship between nutrition, obesity, microbiota and susceptibility to infection

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Enterocolitis caused by Campylobacter jejuni-infections represents an important socioeconomic burden worldwide. Recent results from novel murine infection models reveal that the intestinal microbiota is essential for maintaining colonization resistance against C. jejuni. We extended these studies to investigate the role of nutrition and obesity in susceptibility to C. jejuni-infection. Gnotobiotic (GB) mice generated by antibiotic treatment, which were fed with a human cafeteria diet (CAF), as well as obese ( ob/ob) mice with a conventional microbiota harbored higher Escherichia coli loads in their colon as compared to respective controls. Following oral infection, C. jejuni 43431 ATCC readily colonized the intestines of CAF and ob/ob mice, whereas GB mice fed with a standard chow (MUD) eradicated the pathogen within days. Furthermore, live C. jejuni translocated into mesenteric lymph nodes of CAF, but not MUD mice. Strikingly, stably infected animals developed enterocolitis as indicated by increased numbers of immune and apoptotic cells in the colon in situ.

          We conclude that a specific human diet and obesity render mice susceptible to C. jejuni infection. The corresponding murine models are excellently suited for the study of C. jejuni pathogenesis and will help to get further insights into interplays between C. jejuni, microbiota, diet, obesity and immunity.

          Related collections

          Most cited references 24

          • Record: found
          • Abstract: found
          • Article: not found

          Gram-negative bacteria aggravate murine small intestinal Th1-type immunopathology following oral infection with Toxoplasma gondii.

          Oral infection of susceptible mice with Toxoplasma gondii results in Th1-type immunopathology in the ileum. We investigated gut flora changes during ileitis and determined contributions of gut bacteria to intestinal inflammation. Analysis of the intestinal microflora revealed that ileitis was accompanied by increasing bacterial load, decreasing species diversity, and bacterial translocation. Gram-negative bacteria identified as Escherichia coli and Bacteroides/Prevotella spp. accumulated in inflamed ileum at high concentrations. Prophylactic or therapeutic administration of ciprofloxacin and/or metronidazole ameliorated ileal immunopathology and reduced intestinal NO and IFN-gamma levels. Most strikingly, gnotobiotic mice in which cultivable gut bacteria were removed by quintuple antibiotic treatment did not develop ileitis after Toxoplasma gondii infection. A reduction in total numbers of lymphocytes was observed in the lamina propria of specific pathogen-free (SPF), but not gnotobiotic, mice upon development of ileitis. Relative numbers of CD4(+) T cells did not differ in naive vs infected gnotobiotic or SPF mice, but infected SPF mice showed a significant increase in the frequencies of activated CD4(+) T cells compared with gnotobiotic mice. Furthermore, recolonization with total gut flora, E. coli, or Bacteroides/Prevotella spp., but not Lactobacillus johnsonii, induced immunopathology in gnotobiotic mice. Animals recolonized with E. coli and/or total gut flora, but not L. johnsonii, showed elevated ileal NO and/or IFN-gamma levels. In conclusion, Gram-negative bacteria, i.e., E. coli, aggravate pathogen-induced intestinal Th1-type immunopathology. Thus, pathogen-induced acute ileitis may prove useful to study bacteria-host interactions in small intestinal inflammation and to test novel therapies based on modulation of gut flora.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Campylobacter jejuni: a brief overview on pathogenicity-associated factors and disease-mediating mechanisms.

            Campylobacter jejuni has long been recognized as a cause of bacterial food-borne illness, and surprisingly, it remains the most prevalent bacterial food-borne pathogen in the industrial world to date. Natural reservoirs for this Gram-negative, spiral-shaped bacterium are wild birds, whose intestines offer a suitable biological niche for the survival and dissemination of C. jejuni Chickens become colonized shortly after birth and are the most important source for human infection. In the last decade, effective intervention strategies to limit infections caused by this elusive pathogen were hindered mainly because of a paucity in understanding the virulence mechanisms of C. jejuni and in part, unavailability of an adequate animal model for the disease. However, recent developments in deciphering molecular mechanisms of virulence of C. jejuni made it clear that C. jejuni is a unique pathogen, being able to execute N-linked glycosylation of more than 30 proteins related to colonization, adherence, and invasion. Moreover, the flagellum is not only depicted to facilitate motility but as well secretion of Campylobacter invasive antigens (Cia). The only toxin of C. jejuni, the so-called cytolethal distending toxin (CdtA,B,C), seems to be important for cell cycle control and induction of host cell apoptosis and has been recognized as a major pathogenicity-associated factor. In contrast to other diarrhoea-causing bacteria, no other classical virulence factors have yet been identified in C. jejuni. Instead, host factors seem to play a major role for pathogenesis of campylobacteriosis of man. Indeed, several lines of evidence suggest exploitation of different adaptation strategies by this pathogen depending on its requirement, whether to establish itself in the natural avian reservoir or during the course of human infection. (c) 2009 Elsevier GmbH. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MyD88/TLR9 mediated immunopathology and gut microbiota dynamics in a novel murine model of intestinal graft-versus-host disease.

              The bacterial microflora aggravates graft-versus-host-disease (GvHD) after allogeneic stem cell transplantation, but the underlying mechanisms of manifestations of intestinal GvHD (iGvHD) in the gut remain poorly understood. To analyse the gut flora composition and the impact of bacterial sensing via Toll-like receptors (TLRs) in iGvHD. By mimicking clinical low-intensity conditioning regimens used in humans, a novel irradiation independent, treosulfan and cyclophosphamide-based murine allogeneic transplantation model was established. A global survey of the intestinal microflora by cultural and molecular methods was performed, the intestinal immunopathology in TLR-deficient recipient mice with iGvHD investigated and finally, the impact of anti-TLR9 treatment on iGvHD development assessed. The inflammatory responses in iGvHD were accompanied by gut flora shifts towards enterobacteria, enterococci and Bacteroides/Prevotella spp. Analysis of iGvHD in MyD88(-/-), TRIF(-/-), TLR2/4(-/-), and TLR9(-/-) recipient mice showed that bacterial sensing via TLRs was essential for iGvHD development. Acute iGvHD was characterised by increasing numbers of apoptotic cells, proliferating cells, T cells and neutrophils within the colon. These responses were significantly reduced in MyD88(-/-), TLR2/4(-/-), TRIF(-/-) and TLR9(-/-) mice, as compared with wild-type controls. However, TRIF(-/-) and TLR2/4(-/-) mice were not protected from mortality, whereas TLR9(-/-) mice displayed increased survival rates. The important role of TLR9-mediated immunopathology was independently confirmed by significantly reduced macroscopic disease symptoms and colonic apoptosis as well as by reduced T-cell and neutrophil numbers within the colon after treatment with a synthetic inhibitory oligonucleotide. These results emphasise the critical role of gut microbiota, innate immunity and TLR9 in iGvHD and highlight anti-TLR9 strategies as novel therapeutic options.
                Bookmark

                Author and article information

                Journal
                1886
                122234
                European Journal of Microbiology and Immunology
                EuJMI
                Akadémiai Kiadó, co-published with Springer Science+Business Media B.V., Formerly Kluwer Academic Publishers B.V.
                2062-509X
                2062-8633
                1 September 2011
                : 1
                : 3
                : 237-248
                Affiliations
                [ 1 ] Department of Microbiology and Hygiene, Charité — University Medicine Berlin, Berlin, Germany
                [ 2 ] Department of Pathology/ Research Center ImmunoSciences (RCIS), Charité — University Medicine Berlin, Berlin, Germany
                [ 3 ] Department of Internal Medicine, Charité — University Medicine Berlin, Berlin, Germany
                [ 4 ] Department of Microbiology and Hygiene, Campus Benjamin Franklin, Charité — University Medicine Berlin, CC5, Hindenburgdamm 27, D-12203, Berlin, Germany
                Author notes
                [* ] +49-30-8445-3739, +49-30-450-524-902, markus.heimesaat@ 123456charite.de
                Article
                8
                10.1556/EuJMI.1.2011.3.8
                3906620
                24516730
                Categories
                Original Articles

                Comments

                Comment on this article