4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Challenges and Opportunities in Clinical Applications of Blood-Based Proteomics in Cancer

      review-article
      1 , 2 , 1 , * , 3 , *
      Cancers
      MDPI
      serum, proteomics, mass spectrometry, biomarkers

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Simple Summary

          The traditional approach in identifying cancer related protein biomarkers has focused on evaluation of a single peptide/protein in tissue or circulation. At best, this approach has had limited success for clinical applications, since multiple pathological tumor pathways may be involved during initiation or progression of cancer which diminishes the significance of a single candidate protein/peptide. Emerging sensitive proteomic based technologies like liquid chromatography mass spectrometry (LC-MS)-based quantitative proteomics can provide a platform for evaluating serial serum or plasma samples to interrogate secreted products of tumor–host interactions, thereby revealing a more “complete” repertoire of biological variables encompassing heterogeneous tumor biology. However, several challenges need to be met for successful application of serum/plasma based proteomics. These include uniform pre-analyte processing of specimens, sensitive and specific proteomic analytical platforms and adequate attention to study design during discovery phase followed by validation of discovery-level signatures for prognostic, predictive, and diagnostic cancer biomarker applications.

          Abstract

          Blood is a readily accessible biofluid containing a plethora of important proteins, nucleic acids, and metabolites that can be used as clinical diagnostic tools in diseases, including cancer. Like the on-going efforts for cancer biomarker discovery using the liquid biopsy detection of circulating cell-free and cell-based tumor nucleic acids, the circulatory proteome has been underexplored for clinical cancer biomarker applications. A comprehensive proteome analysis of human serum/plasma with high-quality data and compelling interpretation can potentially provide opportunities for understanding disease mechanisms, although several challenges will have to be met. Serum/plasma proteome biomarkers are present in very low abundance, and there is high complexity involved due to the heterogeneity of cancers, for which there is a compelling need to develop sensitive and specific proteomic technologies and analytical platforms. To date, liquid chromatography mass spectrometry (LC-MS)-based quantitative proteomics has been a dominant analytical workflow to discover new potential cancer biomarkers in serum/plasma. This review will summarize the opportunities of serum proteomics for clinical applications; the challenges in the discovery of novel biomarkers in serum/plasma; and current proteomic strategies in cancer research for the application of serum/plasma proteomics for clinical prognostic, predictive, and diagnostic applications, as well as for monitoring minimal residual disease after treatments. We will highlight some of the recent advances in MS-based proteomics technologies with appropriate sample collection, processing uniformity, study design, and data analysis, focusing on how these integrated workflows can identify novel potential cancer biomarkers for clinical applications.

          Related collections

          Most cited references204

          • Record: found
          • Abstract: found
          • Article: found

          Hallmarks of Cancer: The Next Generation

          The hallmarks of cancer comprise six biological capabilities acquired during the multistep development of human tumors. The hallmarks constitute an organizing principle for rationalizing the complexities of neoplastic disease. They include sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis. Underlying these hallmarks are genome instability, which generates the genetic diversity that expedites their acquisition, and inflammation, which fosters multiple hallmark functions. Conceptual progress in the last decade has added two emerging hallmarks of potential generality to this list-reprogramming of energy metabolism and evading immune destruction. In addition to cancer cells, tumors exhibit another dimension of complexity: they contain a repertoire of recruited, ostensibly normal cells that contribute to the acquisition of hallmark traits by creating the "tumor microenvironment." Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer. Copyright © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cancer statistics, 2020

            Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths that will occur in the United States and compiles the most recent data on population-based cancer occurrence. Incidence data (through 2016) were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data (through 2017) were collected by the National Center for Health Statistics. In 2020, 1,806,590 new cancer cases and 606,520 cancer deaths are projected to occur in the United States. The cancer death rate rose until 1991, then fell continuously through 2017, resulting in an overall decline of 29% that translates into an estimated 2.9 million fewer cancer deaths than would have occurred if peak rates had persisted. This progress is driven by long-term declines in death rates for the 4 leading cancers (lung, colorectal, breast, prostate); however, over the past decade (2008-2017), reductions slowed for female breast and colorectal cancers, and halted for prostate cancer. In contrast, declines accelerated for lung cancer, from 3% annually during 2008 through 2013 to 5% during 2013 through 2017 in men and from 2% to almost 4% in women, spurring the largest ever single-year drop in overall cancer mortality of 2.2% from 2016 to 2017. Yet lung cancer still caused more deaths in 2017 than breast, prostate, colorectal, and brain cancers combined. Recent mortality declines were also dramatic for melanoma of the skin in the wake of US Food and Drug Administration approval of new therapies for metastatic disease, escalating to 7% annually during 2013 through 2017 from 1% during 2006 through 2010 in men and women aged 50 to 64 years and from 2% to 3% in those aged 20 to 49 years; annual declines of 5% to 6% in individuals aged 65 years and older are particularly striking because rates in this age group were increasing prior to 2013. It is also notable that long-term rapid increases in liver cancer mortality have attenuated in women and stabilized in men. In summary, slowing momentum for some cancers amenable to early detection is juxtaposed with notable gains for other common cancers.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Regression Shrinkage and Selection Via the Lasso

                Bookmark

                Author and article information

                Journal
                Cancers (Basel)
                Cancers (Basel)
                cancers
                Cancers
                MDPI
                2072-6694
                27 August 2020
                September 2020
                : 12
                : 9
                : 2428
                Affiliations
                [1 ]Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY 14853, USA; rb822@ 123456cornell.edu
                [2 ]Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA; Oberg.Ann@ 123456mayo.edu
                [3 ]Department of Medicine, Division of Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
                Author notes
                [* ]Correspondence: sz14@ 123456cornell.edu (S.Z.); manish.kohli@ 123456hci.utah.edu (M.K.); Tel.: +1-607-255-6802 (S.Z.); +1-801-646-4018 (M.K.)
                Author information
                https://orcid.org/0000-0002-5705-5032
                https://orcid.org/0000-0003-2539-9807
                https://orcid.org/0000-0001-8206-1007
                https://orcid.org/0000-0002-9735-6614
                Article
                cancers-12-02428
                10.3390/cancers12092428
                7564506
                32867043
                9706f09d-252c-4a1d-8b8d-1280c1cd823a
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 19 June 2020
                : 25 August 2020
                Categories
                Review

                serum,proteomics,mass spectrometry,biomarkers
                serum, proteomics, mass spectrometry, biomarkers

                Comments

                Comment on this article