59
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Systematic review and meta-analysis of efficacy of mesenchymal stem cells on locomotor recovery in animal models of traumatic brain injury

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          The therapeutic potential of mesenchymal stem cells (MSCs) for traumatic brain injury (TBI) is attractive. Conducting systematic review and meta-analyses based on data from animal studies can be used to inform clinical trial design. To conduct a systematic review and meta-analysis to (i) systematically review the literatures describing the effect of MSCs therapy in animal models of TBI, (ii) determine the estimated effect size of functional locomotor recovery after experimental TBI, and (iii) to provide empirical evidence of biological factors associated with greater efficacy.

          Methods

          We conducted a systematic search of PubMed, EMBASE, and Web of Science and hand searched related references. Studies were selected if they reported the efficacy of MSCs in animal models of TBI. Two investigators independently assessed the identified studies. We extracted the details of individual study characteristics from each publication, assessed study quality, evaluated the effect sizes of MSCs treatment, and performed stratified meta-analysis and meta-regression, to assess the influence of study design on the estimated effect size. The presence of small effect sizes was investigated using funnel plots and Egger’s tests.

          Results

          Twenty-eight eligible controlled studies were identified. The study quality was modest. Between-study heterogeneity was large. Meta-analysis showed that MSCs exert statistically significant positive effects on sensorimotor and neurological motor function. For sensorimotor function, maximum effect size in studies with a quality score of 5 was found in the weight-drop impact injury TBI model established in male SD rats, to which syngeneic umbilical cord-derived MSCs intracerebrally at cell dose of (1–5) × 10 6 was administered r 6 hours following TBI, using ketamine as anesthetic agent. For neurological motor function, effect size was maximum for studies with a quality score of 5, in which the weight-drop impact injury TBI models of the female Wistar rats were adopted, with administration syngeneic bone marrow-derived MSCs intravenously at cell dose of 5 × 10 6 at 2 months after TBI, using sevofluorane as anesthetic agent.

          Conclusions

          We conclude that MSCs therapy may improve locomotor recovery after TBI. However, additional well-designed and well-reported animal studies are needed to guide further clinical studies.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s13287-015-0034-0) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references75

          • Record: found
          • Abstract: found
          • Article: not found

          Fibroblast precursors in normal and irradiated mouse hematopoietic organs.

          Using the in vitro colony assay, clonogenic fibroblast precursor cells (CFU-F) were detected in the bone marrow, spleen and thymus from adult mice. The survival curve for CFU-F of mouse bone marrow irradiated in vitro has a D0 of 220 r. Regeneration of bone marrow CFU-F after whole-body irradiation with 150 r is characterized by a marked secondary loss and post-irradiation lag and dip, lasting 6 days, followed by return to normal values by about the 25th day. This pattern of post-radiation recovery of CFU-F is similar to that of the CFU-s. In addition, during the first 6 hours following irradiation the number of CFU-F increased approximately twofold.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mesenchymal stem cells: mechanisms of inflammation.

            In adults, human mesenchymal stem cells (hMSCs) are found in vivo at low frequency and are defined by their capacity to differentiate into bone, cartilage, and adipose tissue, depending on the stimuli and culture conditions under which they are expanded. Although MSCs were initially hypothesized to be the panacea for regenerating tissues, MSCs appear to be more important in therapeutics to regulate the immune response invoked in settings such as tissue injury, transplantation, and autoimmunity. MSCs have been used therapeutically in clinical trials and subsequently in practice to treat graft-versus-host disease following bone marrow transplantation. Reports of successful immune modulation suggest efficacy in a wide range of autoimmune conditions, such as demyelinating neurological disease (multiple sclerosis), systemic lupus erythematosus, and Crohn's disease, among others. This review provides background information about hMSCs and also describes their putative mechanisms of action in inflammation. We provide a summary of ongoing clinical trials to allow (a) full comprehension of the range of diseases in which hMSC therapy may be beneficial and (b) identification of gaps in our knowledge about the mechanisms of action of therapeutic MSCs in disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Recommendations for standards regarding preclinical neuroprotective and restorative drug development.

              (1999)
              The plethora of failed clinical trials with neuroprotective drugs for acute ischemic stroke have raised justifiable concerns about how best to proceed for the future development of such interventions. Preclinical testing of neuroprotective drugs is an important aspect of assessing their therapeutic potential, but guidelines concerning how to perform preclinical development of purported neuroprotective drugs for acute ischemic stroke are lacking. This conference of academicians and industry representatives was convened to suggest such guidelines for the preclinical evaluation of neuroprotective drugs and to recommend to potential clinical investigators the data they should review to reassure themselves that a particular neuroprotective drug has a reasonable chance to succeed in an appropriately designed clinical trial. Without rigorous, robust, and detailed preclinical evaluation, it is unlikely that novel neuroprotective drugs will prove to be effective when tested in large, time-consuming, and expensive clinical trials. Additionally, similar recommendations are provided for drugs with the potential to enhance recovery after acute ischemic stroke, a burgeoning new field with great potential but little currently available data. The suggestions contained in this document are meant to serve as overall guidelines that must be adapted to the individual characteristics related to particular drugs and their preclinical and clinical development needs.
                Bookmark

                Author and article information

                Contributors
                pengweijun1987@gmail.com
                lucysunmoon@126.com
                921191689@qq.com
                ericwangzhe@126.com
                3130748102@qq.com
                chzxysm@yahoo.com
                1973240230@qq.com
                Journal
                Stem Cell Res Ther
                Stem Cell Res Ther
                Stem Cell Research & Therapy
                BioMed Central (London )
                1757-6512
                26 March 2015
                26 March 2015
                2015
                : 6
                : 1
                : 47
                Affiliations
                [ ]Department of Integrated Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan 410011 PR China
                [ ]Department of Pathology, Development and Regeneration Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan 610500 PR China
                [ ]Institute of Integrated Medicine, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, Hunan 410008 PR China
                Article
                34
                10.1186/s13287-015-0034-0
                4425919
                25881229
                97080d28-9980-4306-8eca-4ec60a836b8c
                © Peng et al.; licensee BioMed Central. 2015

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 4 December 2014
                : 13 February 2015
                : 3 March 2015
                Categories
                Research
                Custom metadata
                © The Author(s) 2015

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article