38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The evolution of the manus of early theropod dinosaurs is characterized by high inter‐ and intraspecific variation

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The origin of the avian hand, with its reduced and fused carpals and digits, from the five‐fingered hands and complex wrists of early dinosaurs represents one of the major transformations of manus morphology among tetrapods. Much attention has been directed to the later part of this transition, from four‐ to three‐fingered taxa. However, earlier anatomical changes may have influenced these later modifications, possibly paving the way for a later frameshift in digit identities. We investigate the five‐ to four‐fingered transition among early dinosaurs, along with changes in carpus morphology. New three‐dimensional reconstructions from computed tomography data of the manus of the Triassic and Early Jurassic theropod dinosaurs Coelophysis bauri and Megapnosaurus rhodesiensis are described and compared intra‐ and interspecifically. Several novel findings emerge from these reconstructions and comparisons, including the first evidence of an ossified centrale and a free intermedium in some C. bauri specimens, as well as confirmation of the presence of a vestigial fifth metacarpal in this taxon. Additionally, a specimen of C. bauri and an unnamed coelophysoid from the Upper Triassic Hayden Quarry, New Mexico, are to our knowledge the only theropods (other than alvarezsaurs and birds) in which all of the distal carpals are completely fused together into a single unit. Several differences between the manus of C. bauri and M. rhodesiensis are also identified. We review the evolution of the archosauromorph manus more broadly in light of these new data, and caution against incorporating carpal characters in phylogenetic analyses of fine‐scale relationships of Archosauromorpha, in light of the high degree of observed polymorphism in taxa for which large sample sizes are available, such as the theropod Coelophysis and the sauropodomorph Plateosaurus. We also find that the reduction of the carpus and ultimate loss of the fourth and fifth digits among early dinosaurs did not proceed in a neat, stepwise fashion, but was characterized by multiple losses and possible gains of carpals, metacarpals and phalanges. Taken together, the high degree of intra‐ and interspecific variability in the number and identities of carpals, and the state of reduction of the fourth and fifth digits suggest the presence of a ‘zone of developmental variability’ in early dinosaur manus evolution, from which novel avian‐like morphologies eventually emerged and became channelized among later theropod clades.

          Related collections

          Most cited references147

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The phylogenetic relationships of basal archosauromorphs, with an emphasis on the systematics of proterosuchian archosauriforms

          The early evolution of archosauromorphs during the Permo-Triassic constitutes an excellent empirical case study to shed light on evolutionary radiations in deep time and the timing and processes of recovery of terrestrial faunas after a mass extinction. However, macroevolutionary studies of early archosauromorphs are currently limited by poor knowledge of their phylogenetic relationships. In particular, one of the main early archosauromorph groups that need an exhaustive phylogenetic study is “Proterosuchia,” which as historically conceived includes members of both Proterosuchidae and Erythrosuchidae. A new data matrix composed of 96 separate taxa (several of them not included in a quantitative phylogenetic analysis before) and 600 osteological characters was assembled and analysed to generate a comprehensive higher-level phylogenetic hypothesis of basal archosauromorphs and shed light on the species-level interrelationships of taxa historically identified as proterosuchian archosauriforms. The results of the analysis using maximum parsimony include a polyphyletic “Prolacertiformes” and “Protorosauria,” in which the Permian Aenigmastropheus and Protorosaurus are the most basal archosauromorphs. The enigmatic choristoderans are either found as the sister-taxa of all other lepidosauromorphs or archosauromorphs, but consistently placed within Sauria. Prolacertids, rhynchosaurs, allokotosaurians and tanystropheids are the major successive sister clades of Archosauriformes. The Early Triassic Tasmaniosaurus is recovered as the sister-taxon of Archosauriformes. Proterosuchidae is unambiguosly restricted to five species that occur immediately after and before the Permo-Triassic boundary, thus implying that they are a short-lived “disaster” clade. Erythrosuchidae is composed of eight nominal species that occur during the Early and Middle Triassic. “Proterosuchia” is polyphyletic, in which erythrosuchids are more closely related to Euparkeria and more crownward archosauriforms than to proterosuchids, and several species are found widespread along the archosauromorph tree, some being nested within Archosauria (e.g., “Chasmatosaurus ultimus,” Youngosuchus). Doswelliids and proterochampsids are recovered as more closely related to each other than to other archosauromorphs, forming a large clade (Proterochampsia) of semi-aquatic to aquatic forms that includes the bizarre genus Vancleavea. Euparkeria is one of the sister-taxa of the clade composed of proterochampsians and archosaurs. The putative Indian archosaur Yarasuchus is recovered in a polytomy with Euparkeria and more crownward archosauriforms, and as more closely related to the Russian Dongusuchus than to other species. Phytosaurs are recovered as the sister-taxa of all other pseudosuchians, thus being nested within Archosauria.
            • Record: found
            • Abstract: not found
            • Article: not found

            A new carnosaur (Dinosauria, Theropoda) from the Jurassic of Xinjiang, People's Republic of China

              • Record: found
              • Abstract: found
              • Article: not found

              The origin and early evolution of dinosaurs.

              The oldest unequivocal records of Dinosauria were unearthed from Late Triassic rocks (approximately 230 Ma) accumulated over extensional rift basins in southwestern Pangea. The better known of these are Herrerasaurus ischigualastensis, Pisanosaurus mertii, Eoraptor lunensis, and Panphagia protos from the Ischigualasto Formation, Argentina, and Staurikosaurus pricei and Saturnalia tupiniquim from the Santa Maria Formation, Brazil. No uncontroversial dinosaur body fossils are known from older strata, but the Middle Triassic origin of the lineage may be inferred from both the footprint record and its sister-group relation to Ladinian basal dinosauromorphs. These include the typical Marasuchus lilloensis, more basal forms such as Lagerpeton and Dromomeron, as well as silesaurids: a possibly monophyletic group composed of Mid-Late Triassic forms that may represent immediate sister taxa to dinosaurs. The first phylogenetic definition to fit the current understanding of Dinosauria as a node-based taxon solely composed of mutually exclusive Saurischia and Ornithischia was given as "all descendants of the most recent common ancestor of birds and Triceratops". Recent cladistic analyses of early dinosaurs agree that Pisanosaurus mertii is a basal ornithischian; that Herrerasaurus ischigualastensis and Staurikosaurus pricei belong in a monophyletic Herrerasauridae; that herrerasaurids, Eoraptor lunensis, and Guaibasaurus candelariensis are saurischians; that Saurischia includes two main groups, Sauropodomorpha and Theropoda; and that Saturnalia tupiniquim is a basal member of the sauropodomorph lineage. On the contrary, several aspects of basal dinosaur phylogeny remain controversial, including the position of herrerasaurids, E. lunensis, and G. candelariensis as basal theropods or basal saurischians, and the affinity and/or validity of more fragmentary taxa such as Agnosphitys cromhallensis, Alwalkeria maleriensis, Chindesaurus bryansmalli, Saltopus elginensis, and Spondylosoma absconditum. The identification of dinosaur apomorphies is jeopardized by the incompleteness of skeletal remains attributed to most basal dinosauromorphs, the skulls and forelimbs of which are particularly poorly known. Nonetheless, Dinosauria can be diagnosed by a suite of derived traits, most of which are related to the anatomy of the pelvic girdle and limb. Some of these are connected to the acquisition of a fully erect bipedal gait, which has been traditionally suggested to represent a key adaptation that allowed, or even promoted, dinosaur radiation during Late Triassic times. Yet, contrary to the classical "competitive" models, dinosaurs did not gradually replace other terrestrial tetrapods over the Late Triassic. In fact, the radiation of the group comprises at least three landmark moments, separated by controversial (Carnian-Norian, Triassic-Jurassic) extinction events. These are mainly characterized by early diversification in Carnian times, a Norian increase in diversity and (especially) abundance, and the occupation of new niches from the Early Jurassic onwards. Dinosaurs arose from fully bipedal ancestors, the diet of which may have been carnivorous or omnivorous. Whereas the oldest dinosaurs were geographically restricted to south Pangea, including rare ornithischians and more abundant basal members of the saurischian lineage, the group achieved a nearly global distribution by the latest Triassic, especially with the radiation of saurischian groups such as "prosauropods" and coelophysoids.

                Author and article information

                Contributors
                dbarta@amnh.org
                Journal
                J Anat
                J. Anat
                10.1111/(ISSN)1469-7580
                JOA
                Journal of Anatomy
                John Wiley and Sons Inc. (Hoboken )
                0021-8782
                1469-7580
                08 November 2017
                January 2018
                08 November 2017
                : 232
                : 1 ( doiID: 10.1111/joa.2018.232.issue-1 )
                : 80-104
                Affiliations
                [ 1 ] Richard Gilder Graduate School American Museum of Natural History New York NY USA
                [ 2 ] Division of Paleontology American Museum of Natural History New York NY USA
                [ 3 ] Department of Geosciences Virginia Polytechnic Institute and State University Blacksburg VA USA
                Author notes
                [*] [* ] Correspondence

                Daniel E. Barta, Richard Gilder Graduate School, American Museum of Natural History, New York, NY 10024, USA. E: dbarta@ 123456amnh.org

                Author information
                http://orcid.org/0000-0002-2453-0220
                Article
                JOA12719
                10.1111/joa.12719
                5735062
                29114853
                9714a749-cf66-41a5-a606-d289e432fb3d
                © 2017 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.

                This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

                History
                : 05 September 2017
                Page count
                Figures: 11, Tables: 1, Pages: 25, Words: 18843
                Funding
                Funded by: Richard Gilder Graduate School Fellowship
                Funded by: AMNH Division of Paleontology
                Funded by: NSF
                Award ID: DEB‐1601315
                Funded by: Macaulay Family Endowment
                Funded by: Newt and Callista Gingrich Endowment
                Categories
                Original Article
                Original Articles
                Custom metadata
                2.0
                joa12719
                January 2018
                Converter:WILEY_ML3GV2_TO_NLMPMC version:5.2.8 mode:remove_FC converted:18.12.2017

                Anatomy & Physiology
                archosaur,birds,carpus,coelophysis bauri,dinosaur,manus,megapnosaurus rhodesiensis,theropod

                Comments

                Comment on this article

                Related Documents Log