8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MicroRNA-378 protects against intestinal ischemia/reperfusion injury via a mechanism involving the inhibition of intestinal mucosal cell apoptosis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Intestinal ischemia/reperfusion (I/R) injury remains a major clinical event and contributes to high morbidity and mortality rates, but the underlying mechanisms remain elusive. Recent studies have demonstrated that microRNAs (miRNAs) have important roles in organ I/R injury, but the changes and potential roles of miRNAs in intestinal I/R-induced intestinal injury are unclear. This study was designed to analyze the miRNA expression profiles in intestinal mucosa after I/R injury and to explore the role of target miRNA during this process. Using miRNA microarray analysis, we found changes of 19 miRNAs from the expression profile of miRNAs in a mouse model of intestinal I/R and further verified them by RT-qPCR. Here, we report that miR-378 is one of the markedly decreased miRNAs and found the putative target mRNA that is linked to cell death after applying the TargetScan, miRanda, CLIP-Seq and miRDB prediction algorithms. Our results show that the overexpression of miR-378 significantly ameliorated intestinal tissue damage in wild-type and transgenic mice and oxygen glucose deprivation/reperfusion-challenged IEC-6 cell injury. Moreover, miR-378 overexpression reduced intestinal epithelial cell apoptosis in both in vivo and in vitro ischemic models and attenuated cleaved caspase-3 expression. Collectively, our results revealed that the suppression of caspase-3 activation by miRNA-378 overexpression may be involved in the protective effects of intestinal ischemic damage. MiRNA-378 may serve as a key regulator and therapeutic target in intestinal I/R injury.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Prediction of mammalian microRNA targets.

          MicroRNAs (miRNAs) can play important gene regulatory roles in nematodes, insects, and plants by basepairing to mRNAs to specify posttranscriptional repression of these messages. However, the mRNAs regulated by vertebrate miRNAs are all unknown. Here we predict more than 400 regulatory target genes for the conserved vertebrate miRNAs by identifying mRNAs with conserved pairing to the 5' region of the miRNA and evaluating the number and quality of these complementary sites. Rigorous tests using shuffled miRNA controls supported a majority of these predictions, with the fraction of false positives estimated at 31% for targets identified in human, mouse, and rat and 22% for targets identified in pufferfish as well as mammals. Eleven predicted targets (out of 15 tested) were supported experimentally using a HeLa cell reporter system. The predicted regulatory targets of mammalian miRNAs were enriched for genes involved in transcriptional regulation but also encompassed an unexpectedly broad range of other functions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            miRDB: an online resource for microRNA target prediction and functional annotations

            MicroRNAs (miRNAs) are small non-coding RNAs that are extensively involved in many physiological and disease processes. One major challenge in miRNA studies is the identification of genes regulated by miRNAs. To this end, we have developed an online resource, miRDB (http://mirdb.org), for miRNA target prediction and functional annotations. Here, we describe recently updated features of miRDB, including 2.1 million predicted gene targets regulated by 6709 miRNAs. In addition to presenting precompiled prediction data, a new feature is the web server interface that allows submission of user-provided sequences for miRNA target prediction. In this way, users have the flexibility to study any custom miRNAs or target genes of interest. Another major update of miRDB is related to functional miRNA annotations. Although thousands of miRNAs have been identified, many of the reported miRNAs are not likely to play active functional roles or may even have been falsely identified as miRNAs from high-throughput studies. To address this issue, we have performed combined computational analyses and literature mining, and identified 568 and 452 functional miRNAs in humans and mice, respectively. These miRNAs, as well as associated functional annotations, are presented in the FuncMir Collection in miRDB.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An HNF4α-miRNA inflammatory feedback circuit regulates hepatocellular oncogenesis.

              Hepatocyte nuclear factor 4α (HNF4α) is essential for liver development and hepatocyte function. Here, we show that transient inhibition of HNF4α initiates hepatocellular transformation through a microRNA-inflammatory feedback loop circuit consisting of miR-124, IL6R, STAT3, miR-24, and miR-629. Moreover, we show that, once this circuit is activated, it maintains suppression of HNF4α and sustains oncogenesis. Systemic administration of miR-124, which modulates inflammatory signaling, prevents and suppresses hepatocellular carcinogenesis by inducing tumor-specific apoptosis without toxic side effects. As we also show that this HNF4α circuit is perturbed in human hepatocellular carcinomas, our data raise the possibility that manipulation of this microRNA feedback-inflammatory loop has therapeutic potential for treating liver cancer. Copyright © 2011 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Cell Death Dis
                Cell Death Dis
                Cell Death & Disease
                Nature Publishing Group
                2041-4889
                October 2017
                12 October 2017
                1 October 2017
                : 8
                : 10
                : e3127
                Affiliations
                [1 ]Department of Anesthesiology, Nanfang Hospital, Southern Medical University , Guangzhou, 510515 China
                [2 ]Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University , Guangzhou 510080, China
                [3 ]Department of Anesthesiology, Shaanxi Provincial People’s Hospital , Shaanxi 710068, China
                Author notes
                [* ]Department of Anesthesiology, Nanfang Hospital, Southern Medical University , 1838 Guangzhou Avenue North, Guangzhou 510515, China. Tel: +86 13710684096; Fax: +020 877 696 73; E-mail: licaisysu@ 123456163.com or liukexuan705@ 123456163.com
                [4]

                These authors contributed equally to this work.

                Article
                cddis2017508
                10.1038/cddis.2017.508
                5682673
                29022896
                9727ee36-967d-4d53-a373-beec1747d046
                Copyright © 2017 The Author(s)

                Cell Death and Disease is an open-access journal published by Nature Publishing Group. This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 10 May 2017
                : 12 July 2017
                : 04 September 2017
                Categories
                Original Article

                Cell biology
                Cell biology

                Comments

                Comment on this article