173
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Genetic variation of a bacterial pathogen within individuals with cystic fibrosis provides a record of selective pressures

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Advances in sequencing have enabled the identification of mutations acquired by bacterial pathogens during infection 1- 10 . However, it remains unclear whether adaptive mutations fix in the population or lead to pathogen diversification within the patient 11, 12 . Here, we study the genotypic diversity of Burkholderia dolosa within people with cystic fibrosis by re-sequencing individual colonies and whole populations from single sputum samples. Extensive intra-sample diversity reveals that mutations rarely fix within a patient's pathogen population—instead, diversifying lineages coexist for many years. When strong selection is acting on a gene, multiple adaptive mutations arise but neither sweeps to fixation, generating lasting allele diversity that provides a recorded signature of past selection. Genes involved in outer-membrane components, iron scavenging and antibiotic resistance all showed this signature of within-patient selection. These results offer a general and rapid approach for identifying selective pressures acting on a pathogen in individual patients based on single clinical samples.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing.

          The Gram-negative bacteria Klebsiella pneumoniae is a major cause of nosocomial infections, primarily among immunocompromised patients. The emergence of strains resistant to carbapenems has left few treatment options, making infection containment critical. In 2011, the U.S. National Institutes of Health Clinical Center experienced an outbreak of carbapenem-resistant K. pneumoniae that affected 18 patients, 11 of whom died. Whole-genome sequencing was performed on K. pneumoniae isolates to gain insight into why the outbreak progressed despite early implementation of infection control procedures. Integrated genomic and epidemiological analysis traced the outbreak to three independent transmissions from a single patient who was discharged 3 weeks before the next case became clinically apparent. Additional genomic comparisons provided evidence for unexpected transmission routes, with subsequent mining of epidemiological data pointing to possible explanations for these transmissions. Our analysis demonstrates that integration of genomic and epidemiological data can yield actionable insights and facilitate the control of nosocomial transmission.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Sequence-specific error profile of Illumina sequencers

            We identified the sequence-specific starting positions of consecutive miscalls in the mapping of reads obtained from the Illumina Genome Analyser (GA). Detailed analysis of the miscall pattern indicated that the underlying mechanism involves sequence-specific interference of the base elongation process during sequencing. The two major sequence patterns that trigger this sequence-specific error (SSE) are: (i) inverted repeats and (ii) GGC sequences. We speculate that these sequences favor dephasing by inhibiting single-base elongation, by: (i) folding single-stranded DNA and (ii) altering enzyme preference. This phenomenon is a major cause of sequence coverage variability and of the unfavorable bias observed for population-targeted methods such as RNA-seq and ChIP-seq. Moreover, SSE is a potential cause of false single-nucleotide polymorphism (SNP) calls and also significantly hinders de novo assembly. This article highlights the importance of recognizing SSE and its underlying mechanisms in the hope of enhancing the potential usefulness of the Illumina sequencers.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Whole-genome sequencing for analysis of an outbreak of meticillin-resistant Staphylococcus aureus: a descriptive study

              Summary Background The emergence of meticillin-resistant Staphylococcus aureus (MRSA) that can persist in the community and replace existing hospital-adapted lineages of MRSA means that it is necessary to understand transmission dynamics in terms of hospitals and the community as one entity. We assessed the use of whole-genome sequencing to enhance detection of MRSA transmission between these settings. Methods We studied a putative MRSA outbreak on a special care baby unit (SCBU) at a National Health Service Foundation Trust in Cambridge, UK. We used whole-genome sequencing to validate and expand findings from an infection-control team who assessed the outbreak through conventional analysis of epidemiological data and antibiogram profiles. We sequenced isolates from all colonised patients in the SCBU, and sequenced MRSA isolates from patients in the hospital or community with the same antibiotic susceptibility profile as the outbreak strain. Findings The hospital infection-control team identified 12 infants colonised with MRSA in a 6 month period in 2011, who were suspected of being linked, but a persistent outbreak could not be confirmed with conventional methods. With whole-genome sequencing, we identified 26 related cases of MRSA carriage, and showed transmission occurred within the SCBU, between mothers on a postnatal ward, and in the community. The outbreak MRSA type was a new sequence type (ST) 2371, which is closely related to ST22, but contains genes encoding Panton-Valentine leucocidin. Whole-genome sequencing data were used to propose and confirm that MRSA carriage by a staff member had allowed the outbreak to persist during periods without known infection on the SCBU and after a deep clean. Interpretation Whole-genome sequencing holds great promise for rapid, accurate, and comprehensive identification of bacterial transmission pathways in hospital and community settings, with concomitant reductions in infections, morbidity, and costs. Funding UK Clinical Research Collaboration Translational Infection Research Initiative, Wellcome Trust, Health Protection Agency, and the National Institute for Health Research Cambridge Biomedical Research Centre.
                Bookmark

                Author and article information

                Journal
                9216904
                2419
                Nat Genet
                Nat. Genet.
                Nature genetics
                1061-4036
                1546-1718
                10 January 2014
                08 December 2013
                January 2014
                01 July 2014
                : 46
                : 1
                : 82-87
                Affiliations
                [1 ]Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
                [2 ]Division of Infectious Diseases, Department of Medicine, Boston Children's Hospital; and Harvard Medical School, Boston, MA 02115, USA
                [3 ]Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
                [4 ]Division of Respiratory Diseases, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
                [5 ]Department of Laboratory Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA02115, USA
                [6 ]Department of Anesthesiology, Perioperative and Pain Medicine, Division of Critical Care Medicine; Boston Children's Hospital; and Harvard Medical School, Boston, MA 02115, USA
                [7 ]Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
                Author notes
                Article
                NIHMS540314
                10.1038/ng.2848
                3979468
                24316980
                9728826e-ae70-448f-af8f-37bc8bd30727
                History
                Categories
                Article

                Genetics
                Genetics

                Comments

                Comment on this article