17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ibuprofen enhances the anticancer activity of cisplatin in lung cancer cells by inhibiting the heat shock protein 70

      research-article
      1 , 2 , 1 , 2 , * , 1 , 1
      Cell Death & Disease
      Nature Publishing Group
      Hsp70, apoptosis, ibuprofen

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hsp70 is often overexpressed in cancer cells, and the selective cellular survival advantage that it confers may contribute to the process of tumour formation. Thus, the pharmacological manipulation of Hsp70 levels in cancer cells may be an effective means of preventing the progression of tumours. We found that the downregulation of Hsp70 by ibuprofen in vitro enhances the antitumoural activity of cisplatin in lung cancer. Ibuprofen prominently suppressed the expression of Hsp70 in A549 cells derived from lung adenocarcinoma and sensitized them to cisplatin in association with an increase in the mitochondrial apoptotic cascade, whereas ibuprofen alone did not induce cell death. The cisplatin-dependent events occurring up- and downstream of mitochondrial disruption were accelerated by treatment with ibuprofen. The increase in cisplatin-induced apoptosis caused by the depletion of Hsp70 by RNA interference is evidence that the increased apoptosis by ibuprofen is mediated by its effect on Hsp70. Our observations indicate that the suppression of Hsp70 by ibuprofen mediates the sensitivity to cisplatin by enhancing apoptosis at several stages of the mitochondrial cascade. Ibuprofen, therefore, is a potential therapeutic agent that might allow lowering the doses of cisplatin and limiting the many challenge associated with its toxicity and development of drug resistance.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Nonsteroidal anti-inflammatory drugs as anticancer agents: mechanistic, pharmacologic, and clinical issues.

          Numerous experimental, epidemiologic, and clinical studies suggest that nonsteroidal anti-inflammatory drugs (NSAIDs), particularly the highly selective cyclooxygenase (COX)-2 inhibitors, have promise as anticancer agents. NSAIDs restore normal apoptosis in human adenomatous colorectal polyps and in various cancer cell lines that have lost adenomatous polyposis coli gene function. NSAIDs also inhibit angiogenesis in cell culture and rodent models of angiogenesis. Many epidemiologic studies have found that long-term use of NSAIDs is associated with a lower risk of colorectal cancer, adenomatous polyps, and, to some extent, other cancers. Two NSAIDs, sulindac and celecoxib, have been found to inhibit the growth of adenomatous polyps and cause regression of existing polyps in randomized trials of patients with familial adenomatous polyposis (FAP). However, unresolved questions about the safety, efficacy, optimal treatment regimen, and mechanism of action of NSAIDs currently limit their clinical application to the prevention of polyposis in FAP patients. Moreover, the development of safe and effective drugs for chemoprevention is complicated by the potential of even rare, serious toxicity to offset the benefit of treatment, particularly when the drug is administered to healthy people who have low annual risk of developing the disease for which treatment is intended. This review considers generic approaches to improve the balance between benefits and risks associated with the use of NSAIDs in chemoprevention. We critically examine the published experimental, clinical, and epidemiologic literature on NSAIDs and cancer, especially that regarding colorectal cancer, and identify strategies to overcome the various logistic and scientific barriers that impede clinical trials of NSAIDs for cancer prevention. Finally, we suggest research opportunities that may help to accelerate the future clinical application of NSAIDs for cancer prevention or treatment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome.

            The cellular-stress response can mediate cellular protection through expression of heat-shock protein (Hsp) 70, which can interfere with the process of apoptotic cell death. Stress-induced apoptosis proceeds through a defined biochemical process that involves cytochrome c, Apaf-1 and caspase proteases. Here we show, using a cell-free system, that Hsp70 prevents cytochrome c/dATP-mediated caspase activation, but allows the formation of Apaf-1 oligomers. Hsp70 binds to Apaf-1 but not to procaspase-9, and prevents recruitment of caspases to the apoptosome complex. Hsp70 therefore suppresses apoptosis by directly associating with Apaf-1 and blocking the assembly of a functional apoptosome.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of BAX in the apoptotic response to anticancer agents.

              To assess the role of BAX in drug-induced apoptosis in human colorectal cancer cells, we generated cells that lack functional BAX genes. Such cells were partially resistant to the apoptotic effects of the chemotherapeutic agent 5-fluorouracil, but apoptosis was not abolished. In contrast, the absence of BAX completely abolished the apoptotic response to the chemopreventive agent sulindac and other nonsteroidal anti-inflammatory drugs (NSAIDs). NSAIDs inhibited the expression of the antiapoptotic protein Bcl-XL, resulting in an altered ratio of BAX to Bcl-XL and subsequent mitochondria-mediated cell death. These results establish an unambiguous role for BAX in apoptotic processes in human epithelial cancers and may have implications for cancer chemoprevention strategies.
                Bookmark

                Author and article information

                Journal
                Cell Death Dis
                Cell Death Dis
                Cell Death & Disease
                Nature Publishing Group
                2041-4889
                January 2014
                30 January 2014
                1 January 2014
                : 5
                : 1
                : e1027
                Affiliations
                [1 ]Division of Enzyme Chemistry, Institute for Enzyme Research, The University of Tokushima , Tokushima, Japan
                [2 ]Department of Nutrition, School of Human Cultures, The University of Shiga Prefecture , Shiga, Japan
                Author notes
                [* ]Department of Nutrition, School of Human Cultures, The University of Shiga Prefecture , Hikone, Shiga 522-8533 Japan. Tel: +81 749 28 8441; E-mail: yano.m@ 123456shc.usp.ac.jp
                Article
                cddis2013550
                10.1038/cddis.2013.550
                4040650
                24481441
                973a56eb-2227-4e05-814c-9e3e6c054fb5
                Copyright © 2014 Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

                History
                : 25 June 2013
                : 27 November 2013
                : 10 December 2013
                Categories
                Original Article

                Cell biology
                hsp70,apoptosis,ibuprofen
                Cell biology
                hsp70, apoptosis, ibuprofen

                Comments

                Comment on this article