14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Efficacy of bortezomib in sarcomas with high levels of MAP17 (PDZK1IP1)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sarcomas are malignant tumors accounting for a high percentage of cancer morbidity and mortality in children and young adults. Surgery and radiation therapy are the accepted treatments for most sarcomas; however, patients with metastatic disease are treated with systemic chemotherapy. Many tumors display marginal levels of chemoresponsiveness, and new treatment approaches are needed. MAP17 is a small non-glycosylated membrane protein overexpressed in carcinomas. The levels of MAP17 could be used as a prognostic marker to predict the response to bortezomib in hematological malignancies and in breast tumors. Therefore, we analyzed the expression of this oncogene in sarcomas and its relationship with clinico-pathological features, as well as tested whether it can be used as a new biomarker to predict the therapeutic response to bortezomib and new therapies for sarcomas. We found that the levels of MAP17 were related to clinical features and poor survival in a cohort of 69 patients with different sarcoma types, not being restricted to any special subtype of tumor. MAP17 expression is associated with poor overall survival (p<0.001) and worse disease-free survival (p=0.002). Cell lines with high levels of MAP17 show a better response to bortezomib in vitro. Furthermore, patient-derived xenografts (PDX) with high levels of MAP17 respond to bortezomib in vivo. Our results showed that this response is due to the lower levels of NFκB and autophagy activation. Therefore, we suggest that MAP17 is a new biomarker to predict the efficacy of bortezomib as a new therapy for sarcomas.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Advances in sarcoma genomics and new therapeutic targets.

          Increasingly, human mesenchymal malignancies are being classified by the abnormalities that drive their pathogenesis. Although many of these aberrations are highly prevalent within particular sarcoma subtypes, few are currently targeted therapeutically. Indeed, most subtypes of sarcoma are still treated with traditional therapeutic modalities, and in many cases sarcomas are resistant to adjuvant therapies. In this Review, we discuss the core molecular determinants of sarcomagenesis and emphasize the emerging genomic and functional genetic approaches that, coupled with novel therapeutic strategies, have the potential to transform the care of patients with sarcoma.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanisms of sarcoma development.

            Sarcomas are a rare and diverse group of tumours that are derived from connective tissues, including bone, muscle and cartilage. Although there are instances of hereditary predisposition to sarcomas, the overwhelming majority of such tumours are sporadic. In the past decade, we have gained much insight into the genetic abnormalities that seem to underlie the pathogenesis of these tumours. This information has already led to new classification of many sarcomas, as well as to successful therapies that are targeted at specific genetic abnormalities. It is likely that this approach will lead to continued refinements in classification and treatment of these tumours.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Proteasome inhibitor PS-341 induces apoptosis through induction of endoplasmic reticulum stress-reactive oxygen species in head and neck squamous cell carcinoma cells.

              PS-341, also known as Velcade or Bortezomib, represents a new class of anticancer drugs which has been shown to potently inhibit the growth and/or progression of human cancers, including head and neck squamous cell carcinoma (HNSCC). Although it has been logically hypothesized that NF-kappaB is a major target of PS-341, the underlying mechanism by which PS-341 inhibits tumor cell growth is unclear. Here we found that PS-341 potently activated the caspase cascade and induced apoptosis in human HNSCC cell lines. Although PS-341 could inhibit NF-kappaB activation, the inhibition of NF-kappaB was not sufficient to initiate apoptosis in HNSCC cells. Using biochemical and microarray approaches, we found that proteasome inhibition by PS-341 induced endoplasmic reticulum (ER) stress and reactive oxygen species (ROS) in HNSCC cells. The inhibition of ROS significantly suppressed caspase activation and apoptosis induced by PS-341. Consistently, PS-341 could not induce the ER stress-ROS in PS-341-resistant HNSCC cells. Taken together, our results suggest that in addition to the abolishment of the prosurvival NF-kappaB, PS-341 might directly induce apoptosis by activating proapoptotic ER stress-ROS signaling cascades in HNSCC cells, providing novel insights into the PS-341-mediated antitumor activity.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                11 October 2016
                22 August 2016
                : 7
                : 41
                : 67033-67046
                Affiliations
                1 Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocio, Universidad de Sevilla, Consejo Superior de Investigaciones Cientificas, Seville, Spain
                2 Department of Vegetal Biochemistry and Molecular Biology, University of Seville, Seville, Spain
                3 Department of Medical Oncology, Virgen del Rocío University Hospital, Seville, Spain
                4 Department of Pathology, Virgen del Rocío University Hospital, Seville, Spain
                Author notes
                Correspondence to: Amancio Carnero, acarnero-ibis@ 123456us.es
                Article
                11475
                10.18632/oncotarget.11475
                5341855
                27563810
                97445091-9f41-4332-a091-34276e32ddf8
                Copyright: © 2016 Perez et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 8 March 2016
                : 9 August 2016
                Categories
                Research Paper

                Oncology & Radiotherapy
                map17,bortezomib,pdx,sarcomas,biomarker
                Oncology & Radiotherapy
                map17, bortezomib, pdx, sarcomas, biomarker

                Comments

                Comment on this article