13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Formation of biological condensates via phase separation: Characteristics, analytical methods, and physiological implications

      , , ,
      Journal of Biological Chemistry
      American Society for Biochemistry & Molecular Biology (ASBMB)

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d2454959e182">Liquid–liquid phase separation (LLPS) facilitates the formation of condensed biological assemblies with well-delineated physical boundaries, but without lipid membrane barriers. LLPS is increasingly recognized as a common mechanism for cells to organize and maintain different cellular compartments in addition to classical membrane-delimited organelles. Membraneless condensates have many distinct features that are not present in membrane-delimited organelles and that are likely indispensable for the viability and function of living cells. Malformation of membraneless condensates is increasingly linked to human diseases. In this review, we summarize commonly used methods to investigate various forms of LLPS occurring both in 3D aqueous solution and on 2D membrane bilayers, such as LLPS condensates arising from intrinsically disordered proteins or structured modular protein domains. We then discuss, in the context of comparisons with membrane-delimited organelles, the potential functional implications of membraneless condensate formation in cells. We close by highlighting some challenges in the field devoted to studying LLPS-mediated membraneless condensate formation. </p>

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Phase separation of signaling molecules promotes T cell receptor signal transduction.

          Activation of various cell surface receptors triggers the reorganization of downstream signaling molecules into micrometer- or submicrometer-sized clusters. However, the functional consequences of such clustering have been unclear. We biochemically reconstituted a 12-component signaling pathway on model membranes, beginning with T cell receptor (TCR) activation and ending with actin assembly. When TCR phosphorylation was triggered, downstream signaling proteins spontaneously separated into liquid-like clusters that promoted signaling outputs both in vitro and in human Jurkat T cells. Reconstituted clusters were enriched in kinases but excluded phosphatases and enhanced actin filament assembly by recruiting and organizing actin regulators. These results demonstrate that protein phase separation can create a distinct physical and biochemical compartment that facilitates signaling.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies.

            Cellular granules lacking boundary membranes harbor RNAs and their associated proteins and play diverse roles controlling the timing and location of protein synthesis. Formation of such granules was emulated by treatment of mouse brain extracts and human cell lysates with a biotinylated isoxazole (b-isox) chemical. Deep sequencing of the associated RNAs revealed an enrichment for mRNAs known to be recruited to neuronal granules used for dendritic transport and localized translation at synapses. Precipitated mRNAs contain extended 3' UTR sequences and an enrichment in binding sites for known granule-associated proteins. Hydrogels composed of the low complexity (LC) sequence domain of FUS recruited and retained the same mRNAs as were selectively precipitated by the b-isox chemical. Phosphorylation of the LC domain of FUS prevented hydrogel retention, offering a conceptual means of dynamic, signal-dependent control of RNA granule assembly. Copyright © 2012 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Toxic proteins in neurodegenerative disease.

              J. Taylor (2002)
              A broad range of neurodegenerative disorders is characterized by neuronal damage that may be caused by toxic, aggregation-prone proteins. As genes are identified for these disorders and cell culture and animal models are developed, it has become clear that a major effect of mutations in these genes is the abnormal processing and accumulation of misfolded protein in neuronal inclusions and plaques. Increased understanding of the cellular mechanisms for disposal of abnormal proteins and of the effects of toxic protein accumulation on neuronal survival may allow the development of rational, effective treatment for these disorders.
                Bookmark

                Author and article information

                Journal
                Journal of Biological Chemistry
                J. Biol. Chem.
                American Society for Biochemistry & Molecular Biology (ASBMB)
                0021-9258
                1083-351X
                October 04 2019
                October 04 2019
                October 04 2019
                August 23 2019
                : 294
                : 40
                : 14823-14835
                Article
                10.1074/jbc.REV119.007895
                6779427
                31444270
                97481f7d-e87f-4959-b666-3f4e732544cc
                © 2019
                History

                Comments

                Comment on this article