30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Implications from GW170817 and I-Love-Q relations for relativistic hybrid stars

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references82

          • Record: found
          • Abstract: not found
          • Article: not found

          Nucleosynthesis, neutrino bursts and γ-rays from coalescing neutron stars

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Observation of Gravitational Waves from a Binary Black Hole Merger

            On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of \(1.0 \times 10^{-21}\). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1 {\sigma}. The source lies at a luminosity distance of \(410^{+160}_{-180}\) Mpc corresponding to a redshift \(z = 0.09^{+0.03}_{-0.04}\). In the source frame, the initial black hole masses are \(36^{+5}_{-4} M_\odot\) and \(29^{+4}_{-4} M_\odot\), and the final black hole mass is \(62^{+4}_{-4} M_\odot\), with \(3.0^{+0.5}_{-0.5} M_\odot c^2\) radiated in gravitational waves. All uncertainties define 90% credible intervals.These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Shapiro delay measurement of a two solar mass neutron star

              Neutron stars are composed of the densest form of matter known to exist in our universe, and thus provide a unique laboratory for exploring the properties of cold matter at super-nuclear density. Measurements of the masses or radii of these objects can strongly constrain the neutron-star matter equation of state, and consequently the interior composition of neutron stars. Neutron stars that are visible as millisecond radio pulsars are especially useful in this respect, as timing observations of the radio pulses provide an extremely precise probe of both the pulsar's motion and the surrounding space-time metric. In particular, for a pulsar in a binary system, detection of the general relativistic Shapiro delay allows us to infer the masses of both the neutron star and its binary companion to high precision. Here we present radio timing observations of the binary millisecond pulsar PSR J1614-2230, which show a strong Shapiro delay signature. The implied pulsar mass of 1.97 +/- 0.04 M_sun is by far the highest yet measured with such certainty, and effectively rules out the presence of hyperons, bosons, or free quarks at densities comparable to the nuclear saturation density.
                Bookmark

                Author and article information

                Journal
                PRVDAQ
                Physical Review D
                Phys. Rev. D
                American Physical Society (APS)
                2470-0010
                2470-0029
                April 2018
                April 23 2018
                : 97
                : 8
                Article
                10.1103/PhysRevD.97.084038
                974991d3-6ffb-413c-9091-f50a7f79d02d
                © 2018

                https://link.aps.org/licenses/aps-default-license

                History

                Comments

                Comment on this article