12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Microbial Diversity in the Era of Omic Technologies

      review-article
      , *
      BioMed Research International
      Hindawi Publishing Corporation

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Human life and activity depends on microorganisms, as they are responsible for providing basic elements of life. Although microbes have such a key role in sustaining basic functions for all living organisms, very little is known about their biology since only a small fraction (average 1%) can be cultured under laboratory conditions. This is even more evident when considering that >88% of all bacterial isolates belong to four bacterial phyla, the Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes. Advanced technologies, developed in the last years, promise to revolutionise the way that we characterize, identify, and study microbial communities. In this review, we present the most advanced tools that microbial ecologists can use for the study of microbial communities. Innovative microbial ecological DNA microarrays such as PhyloChip and GeoChip that have been developed for investigating the composition and function of microbial communities are presented, along with an overview of the next generation sequencing technologies. Finally, the Single Cell Genomics approach, which can be used for obtaining genomes from uncultured phyla, is outlined. This tool enables the amplification and sequencing of DNA from single cells obtained directly from environmental samples and is promising to revolutionise microbiology.

          Related collections

          Most cited references108

          • Record: found
          • Abstract: found
          • Article: not found

          Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya.

          Molecular structures and sequences are generally more revealing of evolutionary relationships than are classical phenotypes (particularly so among microorganisms). Consequently, the basis for the definition of taxa has progressively shifted from the organismal to the cellular to the molecular level. Molecular comparisons show that life on this planet divides into three primary groupings, commonly known as the eubacteria, the archaebacteria, and the eukaryotes. The three are very dissimilar, the differences that separate them being of a more profound nature than the differences that separate typical kingdoms, such as animals and plants. Unfortunately, neither of the conventionally accepted views of the natural relationships among living systems--i.e., the five-kingdom taxonomy or the eukaryote-prokaryote dichotomy--reflects this primary tripartite division of the living world. To remedy this situation we propose that a formal system of organisms be established in which above the level of kingdom there exists a new taxon called a "domain." Life on this planet would then be seen as comprising three domains, the Bacteria, the Archaea, and the Eucarya, each containing two or more kingdoms. (The Eucarya, for example, contain Animalia, Plantae, Fungi, and a number of others yet to be defined). Although taxonomic structure within the Bacteria and Eucarya is not treated herein, Archaea is formally subdivided into the two kingdoms Euryarchaeota (encompassing the methanogens and their phenotypically diverse relatives) and Crenarchaeota (comprising the relatively tight clustering of extremely thermophilic archaebacteria, whose general phenotype appears to resemble most the ancestral phenotype of the Archaea.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Community structure and metabolism through reconstruction of microbial genomes from the environment.

            Microbial communities are vital in the functioning of all ecosystems; however, most microorganisms are uncultivated, and their roles in natural systems are unclear. Here, using random shotgun sequencing of DNA from a natural acidophilic biofilm, we report reconstruction of near-complete genomes of Leptospirillum group II and Ferroplasma type II, and partial recovery of three other genomes. This was possible because the biofilm was dominated by a small number of species populations and the frequency of genomic rearrangements and gene insertions or deletions was relatively low. Because each sequence read came from a different individual, we could determine that single-nucleotide polymorphisms are the predominant form of heterogeneity at the strain level. The Leptospirillum group II genome had remarkably few nucleotide polymorphisms, despite the existence of low-abundance variants. The Ferroplasma type II genome seems to be a composite from three ancestral strains that have undergone homologous recombination to form a large population of mosaic genomes. Analysis of the gene complement for each organism revealed the pathways for carbon and nitrogen fixation and energy generation, and provided insights into survival strategies in an extreme environment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Metagenomics: application of genomics to uncultured microorganisms.

              Metagenomics (also referred to as environmental and community genomics) is the genomic analysis of microorganisms by direct extraction and cloning of DNA from an assemblage of microorganisms. The development of metagenomics stemmed from the ineluctable evidence that as-yet-uncultured microorganisms represent the vast majority of organisms in most environments on earth. This evidence was derived from analyses of 16S rRNA gene sequences amplified directly from the environment, an approach that avoided the bias imposed by culturing and led to the discovery of vast new lineages of microbial life. Although the portrait of the microbial world was revolutionized by analysis of 16S rRNA genes, such studies yielded only a phylogenetic description of community membership, providing little insight into the genetics, physiology, and biochemistry of the members. Metagenomics provides a second tier of technical innovation that facilitates study of the physiology and ecology of environmental microorganisms. Novel genes and gene products discovered through metagenomics include the first bacteriorhodopsin of bacterial origin; novel small molecules with antimicrobial activity; and new members of families of known proteins, such as an Na(+)(Li(+))/H(+) antiporter, RecA, DNA polymerase, and antibiotic resistance determinants. Reassembly of multiple genomes has provided insight into energy and nutrient cycling within the community, genome structure, gene function, population genetics and microheterogeneity, and lateral gene transfer among members of an uncultured community. The application of metagenomic sequence information will facilitate the design of better culturing strategies to link genomic analysis with pure culture studies.
                Bookmark

                Author and article information

                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi Publishing Corporation
                2314-6133
                2314-6141
                2013
                24 October 2013
                : 2013
                : 958719
                Affiliations
                Department of Environmental and Natural Resources Management, University of Patras, 2 Seferi Street, 30100 Agrinio, Greece
                Author notes

                Academic Editor: Dimitrios Karpouzas

                Author information
                http://orcid.org/0000-0002-5381-7079
                http://orcid.org/0000-0002-7908-8564
                Article
                10.1155/2013/958719
                3821902
                24260747
                9756b8be-91ab-4443-89df-c38768ce8c55
                Copyright © 2013 S. Nikolaki and G. Tsiamis.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 30 April 2013
                : 26 August 2013
                : 26 August 2013
                Categories
                Review Article

                Comments

                Comment on this article