14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Roles of Cholesterol and Lipids in the Etiopathogenesis of Alzheimer's Disease

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Alzheimer's disease is the principal cause of dementia throughout the world and the fourth cause of death in developed economies.This brain disorder is characterized by the formation of brain protein aggregates, namely, the paired helical filaments and senile plaques. Oxidative stress during life, neuroinflamamtion, and alterations in neuron-glia interaction patterns have been also involved in the etiopathogenesis of this disease. In recent years, cumulative evidence has been gained on the involvement of alteration in neuronal lipoproteins activity, as well as on the role of cholesterol and other lipids in the pathogenesis of this neurodegenerative disorder. In this review, we analyze the links between changes in cholesterol homeostasis, and the changes of lipids of major importance for neuronal activity and Alheimer's disease. The investigation on the fine molecular mechanisms underlying the lipids influence in the etiopathogenesis of Alzheimer's disease may shed light into its treatment and medical management.

          Related collections

          Most cited references167

          • Record: found
          • Abstract: found
          • Article: not found

          Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families.

          The apolipoprotein E type 4 allele (APOE-epsilon 4) is genetically associated with the common late onset familial and sporadic forms of Alzheimer's disease (AD). Risk for AD increased from 20% to 90% and mean age at onset decreased from 84 to 68 years with increasing number of APOE-epsilon 4 alleles in 42 families with late onset AD. Thus APOE-epsilon 4 gene dose is a major risk factor for late onset AD and, in these families, homozygosity for APOE-epsilon 4 was virtually sufficient to cause AD by age 80.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomised controlled trial.

            Although statins reduce coronary and cerebrovascular morbidity and mortality in middle-aged individuals, their efficacy and safety in elderly people is not fully established. Our aim was to test the benefits of pravastatin treatment in an elderly cohort of men and women with, or at high risk of developing, cardiovascular disease and stroke. We did a randomised controlled trial in which we assigned 5804 men (n=2804) and women (n=3000) aged 70-82 years with a history of, or risk factors for, vascular disease to pravastatin (40 mg per day; n=2891) or placebo (n=2913). Baseline cholesterol concentrations ranged from 4.0 mmol/L to 9.0 mmol/L. Follow-up was 3.2 years on average and our primary endpoint was a composite of coronary death, non-fatal myocardial infarction, and fatal or non-fatal stroke. Analysis was by intention-to-treat. Pravastatin lowered LDL cholesterol concentrations by 34% and reduced the incidence of the primary endpoint to 408 events compared with 473 on placebo (hazard ratio 0.85, 95% CI 0.74-0.97, p=0.014). Coronary heart disease death and non-fatal myocardial infarction risk was also reduced (0.81, 0.69-0.94, p=0.006). Stroke risk was unaffected (1.03, 0.81-1.31, p=0.8), but the hazard ratio for transient ischaemic attack was 0.75 (0.55-1.00, p=0.051). New cancer diagnoses were more frequent on pravastatin than on placebo (1.25, 1.04-1.51, p=0.020). However, incorporation of this finding in a meta-analysis of all pravastatin and all statin trials showed no overall increase in risk. Mortality from coronary disease fell by 24% (p=0.043) in the pravastatin group. Pravastatin had no significant effect on cognitive function or disability. Pravastatin given for 3 years reduced the risk of coronary disease in elderly individuals. PROSPER therefore extends to elderly individuals the treatment strategy currently used in middle aged people.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Protein prenylation: molecular mechanisms and functional consequences.

              Prenylation is a class of lipid modification involving covalent addition of either farnesyl (15-carbon) or geranylgeranyl (20-carbon) isoprenoids to conserved cysteine residues at or near the C-terminus of proteins. Known prenylated proteins include fungal mating factors, nuclear lamins, Ras and Ras-related GTP-binding proteins (G proteins), the subunits of trimeric G proteins, protein kinases, and at least one viral protein. Prenylation promotes membrane interactions of most of these proteins, which is not surprising given the hydrophobicity of the lipids involved. In addition, however, prenylation appears to play a major role in several protein-protein interactions involving these species. The emphasis in this review is on the enzymology of prenyl protein processing and the functional significance of prenylation in cellular events. Several other recent reviews provide more detailed coverage of aspects of prenylation that receive limited attention here owing to length restrictions (1-4).
                Bookmark

                Author and article information

                Journal
                J Biomed Biotechnol
                JBB
                Journal of Biomedicine and Biotechnology
                Hindawi Publishing Corporation
                1110-7243
                1110-7251
                2006
                5 July 2006
                : 2006
                : 73976
                Affiliations
                1Laboratory of Cellular and Molecular Biology and Neurosciences, Millennium Institute for Advanced Studies in Cell Biology and Biotechnology (CBB), Millennium Building, Las Encinas 3370, Ñuñoa, Santiago, Chile
                2Department of Chemistry, Arturo Prat University, avenue Arturo Prat 2120, Iquique, Chile
                3Department of Neurological Sciences, Faculty of Medicine, University of Chile, Salvador 486, 750-0922 Providencia, Santiago, Chile
                Author notes
                *Ricardo B. Maccioni: rmaccion@ 123456uchile.cl
                Article
                10.1155/JBB/2006/73976
                1559932
                17047312
                97651931-38a9-4683-a7f7-74fdc31b3728
                Copyright © 2006 Leonel Rojo et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 2 December 2005
                : 25 May 2006
                : 30 May 2006
                Categories
                Review Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article