15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of Substrate to Inoculum Ratio on the Biochemical Methane Potential of Piggery Slaughterhouse Wastes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The aim of this study was to assess the effect of substrate to inoculum ratio (S/I ratio) on the biochemical methane potential (BMP) and anaerobic biodegradability (D deg) of different piggery slaughterhouse wastes, such as piggery blood, intestine residue, and digestive tract content. These wastes were sampled from a piggery slaughterhouse located in Kimje, South Korea. Cumulative methane production curves for the wastes were obtained from the anaerobic batch fermentation having different S/I ratios of 0.1, 0.5, 1.0, and 1.5. BMP and anaerobic biodegradabilities (D deg) of the wastes were calculated from cumulative methane production data for the tested conditions. At the lowest S/I ration of 0.1, BMPs of piggery blood, intestine residue, and digestive tract content were determined to be 0.799, 0.848, and 1.076 Nm 3 kg −1-VS added, respectively, which were above the theoretical methane potentials of 0.539, 0.644, and 0.517 Nm 3 kg −1-VS added for blood, intestine residue, and digestive tract content, respectively. However, BMPs obtained from the higher S/I ratios of 0.5, 1.0, and 1.5 were within the theoretical range for all three types of waste and were not significantly different for the different S/I ratios tested. Anaerobic biodegradabilities calculated from BMP data showed a similar tendency. These results imply that, for BMP assay in an anaerobic reactor, the S/I ratio of anaerobic reactor should be above 0.1 and the inoculum should be sufficiently stabilized to avoid further degradation during the assay.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Inhibition of anaerobic digestion process: a review.

          Anaerobic digestion is an attractive waste treatment practice in which both pollution control and energy recovery can be achieved. Many agricultural and industrial wastes are ideal candidates for anaerobic digestion because they contain high levels of easily biodegradable materials. Problems such as low methane yield and process instability are often encountered in anaerobic digestion, preventing this technique from being widely applied. A wide variety of inhibitory substances are the primary cause of anaerobic digester upset or failure since they are present in substantial concentrations in wastes. Considerable research efforts have been made to identify the mechanism and the controlling factors of inhibition. This review provides a detailed summary of the research conducted on the inhibition of anaerobic processes. The inhibitors commonly present in anaerobic digesters include ammonia, sulfide, light metal ions, heavy metals, and organics. Due to the difference in anaerobic inocula, waste composition, and experimental methods and conditions, literature results on inhibition caused by specific toxicants vary widely. Co-digestion with other waste, adaptation of microorganisms to inhibitory substances, and incorporation of methods to remove or counteract toxicants before anaerobic digestion can significantly improve the waste treatment efficiency.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays.

            The application of anaerobic digestion technology is growing worldwide because of its economic and environmental benefits. As a consequence, a number of studies and research activities dealing with the determination of the biogas potential of solid organic substrates have been carrying out in the recent years. Therefore, it is of particular importance to define a protocol for the determination of the ultimate methane potential for a given solid substrates. In fact, this parameter determines, to a certain extent, both design and economic details of a biogas plant. Furthermore, the definition of common units to be used in anaerobic assays is increasingly requested from the scientific and engineering community. This paper presents some guidelines for biomethane potential assays prepared by the Task Group for the Anaerobic Biodegradation, Activity and Inhibition Assays of the Anaerobic Digestion Specialist Group of the International Water Association. This is the first step for the definition of a standard protocol.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Method for determination of methane potentials of solid organic waste.

              A laboratory procedure is described for measuring methane potentials of organic solid waste. Triplicate reactors with 10 grams of volatile solids were incubated at 55 degrees C with 400 ml of inoculum from a thermophilic biogas plant and the methane production was followed over a 50-day period by regular measurements of methane on a gas chromatograph. The procedure involves blanks as well as cellulose controls. Methane potentials have been measured for source-separated organic household waste and for individual waste materials. The procedure has been evaluated regarding practicality, workload, detection limit, repeatability and reproducibility as well as quality control procedures. For the source-separated organic household waste a methane potential of 495 ml CH4/g VS was found. For fat and oil a lag-phase of several days was seen. The protein sample was clearly inhibited and the maximal methane potential was therefore not achieved. For paper bags, starch and glucose 63, 84 and 94% of the theoretical methane potential was achieved respectively. A detection limit of 72.5 ml CH4/g VS was calculated from the results. This is acceptable, since the methane potential of the tested waste materials was in the range of 200-500 ml CH4/g VS. The determination of methane potentials is a biological method subject to relatively large variation due to the use of non-standardized inoculum and waste heterogeneity. Therefore, procedures for addressing repeatability and reproducibility are suggested.
                Bookmark

                Author and article information

                Journal
                Asian-Australas J Anim Sci
                Asian-australas. J. Anim. Sci
                Asian-Australasian Journal of Animal Sciences
                Asian-Australasian Association of Animal Production Societies (AAAP) and Korean Society of Animal Science and Technology (KSAST)
                1011-2367
                1976-5517
                April 2014
                : 27
                : 4
                : 600-607
                Affiliations
                [1 ]Department of Animal Life and Environment Science, Hankyong National University, Anseong, Gyeonggi, 456-749, Korea.
                Author notes
                [* ]Corresponding Author: Chang-Hyun Kim. Tel: +82-31-670-5095, Fax: +82-31-670-5099, E-mail: kimch@ 123456hknu.ac.kr

                Biogas Research Center, Hankyong National University, Anseong, Gyeonggi, 456-749, Korea

                Article
                ajas-27-4-600-21
                10.5713/ajas.2013.13537
                4093537
                9775d240-27a5-4e3e-99cb-00896ba53369
                Copyright © 2014 by Asian-Australasian Journal of Animal Sciences

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License http://creativecommons.org/licenses/by-nc/3.0/ which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 29 August 2013
                : 21 November 2013
                : 28 October 2013
                Categories
                Articles

                s/i ratio,biochemical methane potential,piggery slaughterhouse waste,anaerobic digestion

                Comments

                Comment on this article