22
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      To submit to Bentham Journals, please click here

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Oxidant/Antioxidant Imbalance and the Risk of Alzheimer's Disease

      research-article
        *
      Current Alzheimer Research
      Bentham Science Publishers
      Alzheimer’s disease, antioxidants, oxidative stress

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Alzheimer's disease (AD) is the most common form of dementia characterized by progressive loss of memory and other cognitive functions among older people. Senile plaques and neurofibrillary tangles are the most hallmarks lesions in the brain of AD in addition to neurons loss. Accumulating evidence has shown that oxidative stress–induced damage may play an important role in the initiation and progression of AD pathogenesis. Redox impairment occurs when there is an imbalance between the production and quenching of free radicals from oxygen species. These reactive oxygen species augment the formation and aggregation of amyloid-β and tau protein hyperphosphorylation and vice versa. Currently, there is no available treatments can modify the disease. However, wide varieties of antioxidants show promise to delay or prevent the symptoms of AD and may help in treating the disease. In this review, the role of oxidative stress in AD pathogenesis and the common used antioxidant therapies for AD will summarize.

          Related collections

          Most cited references131

          • Record: found
          • Abstract: found
          • Article: not found

          Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families.

          The apolipoprotein E type 4 allele (APOE-epsilon 4) is genetically associated with the common late onset familial and sporadic forms of Alzheimer's disease (AD). Risk for AD increased from 20% to 90% and mean age at onset decreased from 84 to 68 years with increasing number of APOE-epsilon 4 alleles in 42 families with late onset AD. Thus APOE-epsilon 4 gene dose is a major risk factor for late onset AD and, in these families, homozygosity for APOE-epsilon 4 was virtually sufficient to cause AD by age 80.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Alzheimer's disease: strategies for disease modification.

            Alzheimer's disease is the largest unmet medical need in neurology. Current drugs improve symptoms, but do not have profound disease-modifying effects. However, in recent years, several approaches aimed at inhibiting disease progression have advanced to clinical trials. Among these, strategies targeting the production and clearance of the amyloid-beta peptide - a cardinal feature of Alzheimer's disease that is thought to be important in disease pathogenesis - are the most advanced. Approaches aimed at modulating the abnormal aggregation of tau filaments (another key feature of the disease), and those targeting metabolic dysfunction, are also being evaluated in the clinic. This article discusses recent progress with each of these strategies, with a focus on anti-amyloid strategies, highlighting the lessons learned and the challenges that remain.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress.

              Docosahexaenoic acid (DHA) is a lipid peroxidation target in oxidative injury to retinal pigment epithelium (RPE) and retina. Photoreceptor and synaptic membranes share the highest content of DHA of all cell membranes. This fatty acid is required for RPE functional integrity; however, it is not known whether specific mediators generated from DHA contribute to its biological significance. We used human ARPE-19 cells and demonstrated the synthesis of 10,17S-docosatriene [neuroprotectin D1 (NPD1)]. This synthesis was enhanced by the calcium ionophore A-23187, by IL-1beta, or by supplying DHA. Under these conditions, there is a time-dependent release of endogenous free DHA followed by NPD1 formation, suggesting that phospholipase A(2) releases the mediator's precursor. Added NPD1 potently counteracted H(2)O(2)/tumor necrosis factor alpha oxidative-stress-triggered apoptotic RPE DNA damage. NPD1 also up-regulated the antiapoptotic proteins Bcl-2 and Bcl-x(L) and decreased proapoptotic Bax and Bad expression. Moreover, NPD1 (50 nM) inhibited oxidative-stress-induced caspase-3 activation. NPD1 also inhibited IL-1beta-stimulated expression of cyclooxygenase 2 promoter transfected into ARPE-19 cells. Overall, NPD1 protected RPE cells from oxidative-stress-induced apoptosis, and we predict that it will similarly protect neurons. This lipid mediator therefore may indirectly contribute to photoreceptor cell survival as well. Because both RPE and photoreceptor cells die in retinal degenerations, our findings contribute to the understanding of retinal cell survival signaling and potentially to the development of new therapeutic strategies.
                Bookmark

                Author and article information

                Journal
                Curr Alzheimer Res
                Curr Alzheimer Res
                CAR
                Current Alzheimer Research
                Bentham Science Publishers
                1567-2050
                1875-5828
                May 2015
                May 2015
                : 12
                : 4
                : 335-349
                Affiliations
                [1]Department of Zoology & Entomology, Faculty of Science, Helwan University, Cairo, Egypt
                Author notes
                [* ]Address correspondence to this author at the Biomedical Research Center, Health Sciences Technology Park, University of Granada, Avda. del Conocimiento s/n, 18100 Armilla, Granada, Spain; Tel: (+34) 611302236;, E-mail: aest1977@ 123456hotmail.com
                Article
                CAR-12-335
                10.2174/1567205012666150325182702
                5384363
                25817254
                9782f138-3edb-46fb-9e06-fb7c6f68cf5c
                © 2015 Bentham Science Publishers

                This is an open access article licensed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 International Public License (CC BY-NC 4.0) ( https://creativecommons.org/licenses/by-nc/4.0/legalcode), which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

                History
                : 13 November 2014
                : 15 March 2015
                : 17 March 2015
                Categories
                Article

                Neurology
                alzheimer’s disease,antioxidants,oxidative stress
                Neurology
                alzheimer’s disease, antioxidants, oxidative stress

                Comments

                Comment on this article