24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cadm1 Is a Metastasis Susceptibility Gene That Suppresses Metastasis by Modifying Tumor Interaction with the Cell-Mediated Immunity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Metastasis is a complex process utilizing both tumor-cell-autonomous properties and host-derived factors, including cellular immunity. We have previously shown that germline polymorphisms can modify tumor cell metastatic capabilities through cell-autonomous mechanisms. However, how metastasis susceptibility genes interact with the tumor stroma is incompletely understood. Here, we employ a complex genetic screen to identify Cadm1 as a novel modifier of metastasis. We demonstrate that Cadm1 can specifically suppress metastasis without affecting primary tumor growth. Unexpectedly, Cadm1 did not alter tumor-cell-autonomous properties such as proliferation or invasion, but required the host's adaptive immune system to affect metastasis. The metastasis-suppressing effect of Cadm1 was lost in mice lacking T cell–mediated immunity, which was partially phenocopied by depleting CD8 + T cells in immune-competent mice. Our data show a novel function for Cadm1 in suppressing metastasis by sensitizing tumor cells to immune surveillance mechanisms, and this is the first report of a heritable metastasis susceptibility gene engaging tumor non-autonomous factors.

          Author Summary

          Metastasis, the dissemination and growth of tumor cells in organs distinct from which they originated, is the most common cause of cancer-related death. Accumulating evidence indicates that an individual's genetic background, the heritable complement of genetic variations that distinguish individuals, not only contributes to overall cancer risk, but also specifically influences metastatic potential. Using a mouse model of metastatic breast cancer and complex genetic analysis, we have identified Cadm1 as a metastasis susceptibility gene. Cadm1 was previously identified as a tumor suppressor in lung adenocarcinoma, and reductions in its expression have been associated with poor survival in numerous cancer types. In this manuscript, we use in vivo modeling to show that high expression of Cadm1 inhibits pulmonary metastasis, while knockdown of Cadm1 promotes the metastatic capability of tumor cells. We further show that the metastasis-suppressive effect of Cadm1 expression is lost in mice lacking T cell–mediated immunity and that this effect is partially mediated by CD8 + T-lymphocytes. Our data suggest that the inverse correlation between Cadm1 expression and disease-free survival in humans is a result of a metastasis-suppressive interaction of Cadm1 with the cell-mediated immunity.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Tumor metastasis: molecular insights and evolving paradigms.

          Metastases represent the end products of a multistep cell-biological process termed the invasion-metastasis cascade, which involves dissemination of cancer cells to anatomically distant organ sites and their subsequent adaptation to foreign tissue microenvironments. Each of these events is driven by the acquisition of genetic and/or epigenetic alterations within tumor cells and the co-option of nonneoplastic stromal cells, which together endow incipient metastatic cells with traits needed to generate macroscopic metastases. Recent advances provide provocative insights into these cell-biological and molecular changes, which have implications regarding the steps of the invasion-metastasis cascade that appear amenable to therapeutic targeting. Copyright © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Strong Time Dependence of the 76-Gene Prognostic Signature for Node-Negative Breast Cancer Patients in the TRANSBIG Multicenter Independent Validation Series

            Recently, a 76-gene prognostic signature able to predict distant metastases in lymph node-negative (N(-)) breast cancer patients was reported. The aims of this study conducted by TRANSBIG were to independently validate these results and to compare the outcome with clinical risk assessment. Gene expression profiling of frozen samples from 198 N(-) systemically untreated patients was done at the Bordet Institute, blinded to clinical data and independent of Veridex. Genomic risk was defined by Veridex, blinded to clinical data. Survival analyses, done by an independent statistician, were done with the genomic risk and adjusted for the clinical risk, defined by Adjuvant! Online. The actual 5- and 10-year time to distant metastasis were 98% (88-100%) and 94% (83-98%), respectively, for the good profile group and 76% (68-82%) and 73% (65-79%), respectively, for the poor profile group. The actual 5- and 10-year overall survival were 98% (88-100%) and 87% (73-94%), respectively, for the good profile group and 84% (77-89%) and 72% (63-78%), respectively, for the poor profile group. We observed a strong time dependence of this signature, leading to an adjusted hazard ratio of 13.58 (1.85-99.63) and 8.20 (1.10-60.90) at 5 years and 5.11 (1.57-16.67) and 2.55 (1.07-6.10) at 10 years for time to distant metastasis and overall survival, respectively. This independent validation confirmed the performance of the 76-gene signature and adds to the growing evidence that gene expression signatures are of clinical relevance, especially for identifying patients at high risk of early distant metastases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Metastasis: a therapeutic target for cancer.

              Metastasis remains the major driver of mortality in patients with cancer. Our growing body of knowledge regarding this process provides the basis for the development of molecularly targeted therapeutics aimed at the tumor cell or its interaction with the host microenvironment. Here we discuss the similarity and differences between primary tumors and metastases, pathways controlling the colonization of a distant organ, and incorporation of antimetastatic therapies into clinical testing.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                September 2012
                September 2012
                20 September 2012
                : 8
                : 9
                : e1002926
                Affiliations
                [1 ]Metastasis Susceptibility Section, Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
                [2 ]School of Medicine, Saint Louis University, St. Louis, Missouri, United States of America
                [3 ]Howard Hughes Medical Institute–National Institutes of Health Research Scholars Program, Chevy Chase, Maryland, United States of America
                [4 ]Tumor Microenvironment Section, Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
                Cincinnati Children's Hospital Medical Center, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: FF KWH LY. Performed the experiments: FF YP RNB RCW. Analyzed the data: KWH FF LY YP. Wrote the paper: FF KWH.

                Article
                PGENETICS-D-12-01164
                10.1371/journal.pgen.1002926
                3447942
                23028344
                9788af4a-6f2b-4ea1-9da4-a5503dfb270e
                Copyright @ 2012

                This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

                History
                : 11 May 2012
                : 13 July 2012
                Page count
                Pages: 14
                Funding
                This work was supported by the National Institutes of Health (NIH), NCI, Center for Cancer Research, Intramural Research Program (Grant# ZIA BC 011255), and the Howard Hughes Medical Institute-NIH Research Scholars Program ( http://www.hhmi.org/cloister/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Genetics
                Animal Genetics
                Cancer Genetics
                Genetic Screens
                Immunology
                Immune Cells
                T Cells

                Genetics
                Genetics

                Comments

                Comment on this article