Blog
About

4
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Disrupted resting-state spontaneous neural activity in stable COPD

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction and aim

          Abnormal brain structure and function in COPD has been reported on MRI. However, the deficit in local synchronization of spontaneous activity in patients with stable COPD remains unknown. The main aim of the present study was to explore spontaneous brain activity in patients with COPD compared with normal controls using the regional homogeneity (ReHo) method based on resting-state functional MRI.

          Methods

          Nineteen patients with stable COPD and 20 well-matched (including age, sex, and number of years of education) normal controls who were recruited for the present study underwent resting-state functional MRI examinations and a series of neuropsychological and clinical assessments. The ReHo method was used to assess the strength of local brain signal synchrony. The mean ReHo values in brain areas with abnormal ReHo were evaluated with a receiver operating characteristic curve. The relationships between the brain regions with altered ReHo values and the clinical and neuropsychological parameters in COPD patients were assessed using Pearson’s correlation.

          Results

          Patients with COPD showed significantly lower ReHo values in the left occipital lobe and the right lingual, bilateral precuneus, and right precentral gyrus. The result of receiver operating characteristic curve analysis showed that the altered average ReHo values have high efficacy for distinguishing function. The mean lower ReHo values in the precuneus gyrus showed a significant positive correlation with FEV 1%, FEV 1/FVC, and orientation function but a significant negative correlation with arterial partial pressure of carbon dioxide.

          Conclusion

          The COPD patients demonstrated abnormal synchrony of regional spontaneous activity, and the regions with abnormal activity were all correlated with visual processing pathways, which might provide us with a new perspective to further understand the underlying pathophysiology of cognitive impairment in patients with COPD.

          Related collections

          Most cited references 42

          • Record: found
          • Abstract: found
          • Article: not found

          A new neural framework for visuospatial processing.

          The division of cortical visual processing into distinct dorsal and ventral streams is a key framework that has guided visual neuroscience. The characterization of the ventral stream as a 'What' pathway is relatively uncontroversial, but the nature of dorsal stream processing is less clear. Originally proposed as mediating spatial perception ('Where'), more recent accounts suggest it primarily serves non-conscious visually guided action ('How'). Here, we identify three pathways emerging from the dorsal stream that consist of projections to the prefrontal and premotor cortices, and a major projection to the medial temporal lobe that courses both directly and indirectly through the posterior cingulate and retrosplenial cortices. These three pathways support both conscious and non-conscious visuospatial processing, including spatial working memory, visually guided action and navigation, respectively.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Frequency-dependent changes in the amplitude of low-frequency fluctuations in amnestic mild cognitive impairment: a resting-state fMRI study.

            Here we utilized resting-state functional magnetic resonance imaging (R-fMRI) to measure the amplitude of low-frequency fluctuations (ALFF) and fractional ALFF (fALFF) in 24 patients with amnestic mild cognitive impairment (aMCI) and 24 age- and sex-matched healthy controls. Two different frequency bands (slow-5: 0.01-0.027 Hz; slow-4: 0.027-0.073 Hz) were analyzed. We showed that there were widespread differences in ALFF/fALFF between the two bands in many brain regions, predominantly including the medial prefrontal cortex (MPFC), posterior cingulate cortex/precuneus (PCC/PCu), basal ganglia, and hippocampus/parahippocampal gyrus (PHG). Compared to controls, the aMCI patients had decreased ALFF/fALFF values in the PCC/PCu, MPFC, hippocampus/PHG, basal ganglia, and prefrontal regions, and increased ALFF/fALFF values mainly in several occipital and temporal regions. Specifically, we observed that the ALFF/fALFF abnormalities in the PCC/PCu, PHG, and several occipital regions were greater in the slow-5 band than in the slow-4 band. Finally, our results of functional analysis were not significantly influenced by the gray matter loss in the MCI patients, suggesting that the results reflect functional differences between groups. Together, our data suggest that aMCI patients have widespread abnormalities in intrinsic brain activity, and the abnormalities depend on the studied frequency bands of R-fMRI data. Copyright © 2010 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Brain activation during human navigation: gender-different neural networks as substrate of performance.

              Visuospatial navigation in animals and human subjects is generally studied using maze exploration. We used functional MRI to observe brain activation in male and female subjects as they searched for the way out of a complex, three-dimensional, virtual-reality maze. Navigation activated the medial occipital gyri, lateral and medial parietal regions, posterior cingulate and parahippocampal gyri as well as the right hippocampus proper. Gender-specific group analysis revealed distinct activation of the left hippocampus in males, whereas females consistently recruited right parietal and right prefrontal cortex. Thus we demonstrate a neural substrate of well established human gender differences in spatial-cognition performance.
                Bookmark

                Author and article information

                Journal
                Int J Chron Obstruct Pulmon Dis
                Int J Chron Obstruct Pulmon Dis
                International Journal of COPD
                International Journal of Chronic Obstructive Pulmonary Disease
                Dove Medical Press
                1176-9106
                1178-2005
                2019
                27 February 2019
                : 14
                : 499-508
                Affiliations
                [1 ]Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, People’s Republic of China, pengdcdoctor@ 123456163.com
                [2 ]Department of Respiratory, The First Affiliated Hospital, Nanchang University, Nanchang, People’s Republic of China
                Author notes
                Correspondence: Dechang Peng, Department of Radiology, The First Affiliated Hospital of Nanchang University, No 17, Yongwai Zheng Street, Donghu District, Nanchang, 330006 Jiangxi Province, People’s Republic, of China, Tel +86 791 8869 4457, Email pengdcdoctor@ 123456163.com
                [*]

                These authors contributed equally to this work

                Article
                copd-14-499
                10.2147/COPD.S190671
                6398400
                © 2019 Xin et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Categories
                Original Research

                Comments

                Comment on this article