24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Patronin mediates a switch from kinesin-13–dependent poleward flux to anaphase B spindle elongation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Patronin counteracts KLP10A activity at spindle poles to stabilize microtubule minus ends and induce spindle elongation during anaphase B.

          Abstract

          Anaphase B spindle elongation contributes to chromosome segregation during Drosophila melanogaster embryo mitosis. We propose that this process is driven by a kinesin-5–generated interpolar microtubule (MT; ipMT) sliding filament mechanism that engages when poleward flux is turned off. In this paper, we present evidence that anaphase B is induced by the minus end–stabilizing protein Patronin, which antagonizes the kinesin-13 depolymerase KLP10A at spindle poles, thereby switching off the depolymerization of the minus ends of outwardly sliding ipMTs to suppress flux. Although intact cortices, kinetochore MTs, and midzone augmentation are dispensable, this Patronin-based change in ipMT minus-end dynamics is sufficient to induce the elongation of spindles capable of separating chromosomes.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Genes required for mitotic spindle assembly in Drosophila S2 cells.

          The formation of a metaphase spindle, a bipolar microtubule array with centrally aligned chromosomes, is a prerequisite for the faithful segregation of a cell's genetic material. Using a full-genome RNA interference screen of Drosophila S2 cells, we identified about 200 genes that contribute to spindle assembly, more than half of which were unexpected. The screen, in combination with a variety of secondary assays, led to new insights into how spindle microtubules are generated; how centrosomes are positioned; and how centrioles, centrosomes, and kinetochores are assembled.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Drosophila EB1 is important for proper assembly, dynamics, and positioning of the mitotic spindle

            EB1 is an evolutionarily conserved protein that localizes to the plus ends of growing microtubules. In yeast, the EB1 homologue (BIM1) has been shown to modulate microtubule dynamics and link microtubules to the cortex, but the functions of metazoan EB1 proteins remain unknown. Using a novel preparation of the Drosophila S2 cell line that promotes cell attachment and spreading, we visualized dynamics of single microtubules in real time and found that depletion of EB1 by RNA-mediated inhibition (RNAi) in interphase cells causes a dramatic increase in nondynamic microtubules (neither growing nor shrinking), but does not alter overall microtubule organization. In contrast, several defects in microtubule organization are observed in RNAi-treated mitotic cells, including a drastic reduction in astral microtubules, malformed mitotic spindles, defocused spindle poles, and mispositioning of spindles away from the cell center. Similar phenotypes were observed in mitotic spindles of Drosophila embryos that were microinjected with anti-EB1 antibodies. In addition, live cell imaging of mitosis in Drosophila embryos reveals defective spindle elongation and chromosomal segregation during anaphase after antibody injection. Our results reveal crucial roles for EB1 in mitosis, which we postulate involves its ability to promote the growth and interactions of microtubules within the central spindle and at the cell cortex.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A bipolar kinesin.

              Chromosome segregation during mitosis depends on the action of the mitotic spindle, a self-organizing, bipolar protein machine which uses microtubules (MTs) and their associated motors. Members of the BimC subfamily of kinesin-related MT-motor proteins are believed to be essential for the formation and functioning of a normal bipolar spindle. Here we report that KRP130, a homotetrameric BimC-related kinesin purified from Drosophila melanogaster embryos, has an unusual ultrastructure. It consists of four kinesin-related polypeptides assembled into a bipolar aggregate with motor domains at opposite ends, analogous to a miniature myosin filament. Such a bipolar 'minifilament' could crosslink spindle MTs and slide them relative to one another. We do not know of any other MT motors that have a bipolar structure.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                J. Cell Biol
                jcb
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                14 October 2013
                : 203
                : 1
                : 35-46
                Affiliations
                Department of Molecular and Cell Biology, University of California, Davis, Davis, CA 95616
                Author notes
                Correspondence to Jonathan M. Scholey: jmscholey@ 123456ucdavis.edu
                Article
                201306001
                10.1083/jcb.201306001
                3798244
                24100293
                97a040af-e264-4363-8e08-2e0c18c03dfd
                © 2013 Wang et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                History
                : 3 June 2013
                : 10 September 2013
                Categories
                Research Articles
                Report

                Cell biology
                Cell biology

                Comments

                Comment on this article