Blog
About

  • Record: found
  • Abstract: found
  • Article: not found
Is Open Access

The skill of seasonal ensemble low-flow forecasts in the Moselle River for three different hydrological models

, ,

Hydrology and Earth System Sciences

Copernicus GmbH

Read this article at

ScienceOpenPublisher
Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      <p><strong>Abstract.</strong> This paper investigates the skill of 90-day low-flow forecasts using two conceptual hydrological models and one data-driven model based on Artificial Neural Networks (ANNs) for the Moselle River. The three models, i.e. HBV, GR4J and ANN-Ensemble (ANN-E), all use forecasted meteorological inputs (precipitation <i>P</i> and potential evapotranspiration PET), whereby we employ ensemble seasonal meteorological forecasts. We compared low-flow forecasts for five different cases of seasonal meteorological forcing: (1) ensemble <i>P</i> and PET forecasts; (2) ensemble <i>P</i> forecasts and observed climate mean PET; (3) observed climate mean <i>P</i> and ensemble PET forecasts; (4) observed climate mean <i>P</i> and PET and (5) zero <i>P</i> and ensemble PET forecasts as input for the models. The ensemble <i>P</i> and PET forecasts, each consisting of 40 members, reveal the forecast ranges due to the model inputs. The five cases are compared for a lead time of 90 days based on model output ranges, whereas the models are compared based on their skill of low-flow forecasts for varying lead times up to 90 days. Before forecasting, the hydrological models are calibrated and validated for a period of 30 and 20 years respectively. The smallest difference between calibration and validation performance is found for HBV, whereas the largest difference is found for ANN-E. From the results, it appears that all models are prone to over-predict runoff during low-flow periods using ensemble seasonal meteorological forcing. The largest range for 90-day low-flow forecasts is found for the GR4J model when using ensemble seasonal meteorological forecasts as input. GR4J, HBV and ANN-E under-predicted 90-day-ahead low flows in the very dry year 2003 without precipitation data. The results of the comparison of forecast skills with varying lead times show that GR4J is less skilful than ANN-E and HBV. Overall, the uncertainty from ensemble <i>P</i> forecasts has a larger effect on seasonal low-flow forecasts than the uncertainty from ensemble PET forecasts and initial model conditions.</p>

      Related collections

      Most cited references 76

      • Record: found
      • Abstract: not found
      • Article: not found

      Long-range experimental hydrologic forecasting for the eastern United States

       Andrew Wood (2002)
        Bookmark
        • Record: found
        • Abstract: not found
        • Article: not found

        Development and test of the distributed HBV-96 hydrological model

          Bookmark
          • Record: found
          • Abstract: not found
          • Article: not found

          Improvement of a parsimonious model for streamflow simulation

            Bookmark

            Author and article information

            Journal
            Hydrology and Earth System Sciences
            Hydrol. Earth Syst. Sci.
            Copernicus GmbH
            1607-7938
            2015
            January 16 2015
            : 19
            : 1
            : 275-291
            10.5194/hess-19-275-2015
            © 2015

            https://creativecommons.org/licenses/by/3.0/

            Product

            Comments

            Comment on this article