16
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Beyond Biology: The Crucial Role of Sex and Gender in Oncology

      Submit here before May 31, 2024

      About Oncology Research and Treatment: 2.4 Impact Factor I 3.3 CiteScore I 0.495 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Lymphomas and Their Microenvironment: A Multifaceted Relationship

      review-article
      , *
      Pathobiology
      S. Karger AG
      Lymphomas, Microenvironment, T-cells, Macrophages, Cytokines

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          It has become evident that the microenvironment – lymphocytes, macrophages, fibroblasts as well as the extracellular matrix, cytokines, chemokines, and a plethora of other cells, structures and substances residing in the vicinity of tumor cells – plays an important part in the maintenance of cancer growth and survival. This is also relevant in lymphomas. In this review, we give an outline on the importance of the microenvironment for tumors in general and lymphomas in particular, by highlighting certain basic principles of tumor-microenvironment interaction. The relationship of lymphomas and their microenvironment is multifaceted: lymphoma cells need growth factors and cytokines derived from microenvironmental cells for their sustenance and growth. On the contrary, many lymphomas silence or at least deregulate the immune system to escape recognition and subsequent elimination by immune cells, while giving advantage to suppressive microenvironmental compounds such as M2 polarized macrophages, regulatory T-cells, mast cells, and immunosuppressive fibroblasts. We also give a detailed insight across different lymphoma types to show the variety of tumor-microenvironment interactions. Due to its tremendous importance, the microenvironment has also become a new target for oncologic therapy. The most important finding concerning lymphomas with a focus on immunomodulatory substances is also, therefore, highlighted.

          Related collections

          Most cited references99

          • Record: found
          • Abstract: found
          • Article: not found

          Constitutive AP-1 activity and EBV infection induce PD-L1 in Hodgkin lymphomas and posttransplant lymphoproliferative disorders: implications for targeted therapy.

          Programmed cell death ligand 1 (PD-L1) is a molecule expressed on antigen-presenting cells that engages the PD-1 receptor on T cells and inhibits T-cell receptor signaling. The PD-1 axis can be exploited by tumor cells to dampen host antitumor immune responses and foster tumor cell survival. PD-1 blockade has shown promise in multiple malignancies but should be directed toward patients in whom it will be most effective. In recent studies, we found that the chromosome 9p24.1 amplification increased the gene dosage of PD-L1 and its induction by JAK2 in a subset of patients with classical Hodgkin lymphoma (cHL). However, cHLs with normal 9p24.1 copy numbers also expressed detectable PD-L1, prompting analyses of additional PD-L1 regulatory mechanisms. Herein, we utilized immunohistochemical, genomic, and functional analyses to define alternative mechanisms of PD-L1 activation in cHL and additional EBV(+) lymphoproliferative disorders. We identified an AP-1-responsive enhancer in the PD-L1 gene. In cHL Reed-Sternberg cells, which exhibit constitutive AP-1 activation, the PD-L1 enhancer binds AP-1 components and increases PD-L1 promoter activity. In addition, we defined Epstein-Barr virus (EBV) infection as an alternative mechanism for PD-L1 induction in cHLs with diploid 9p24.1. PD-L1 was also expressed by EBV-transformed lymphoblastoid cell lines as a result of latent membrane protein 1-mediated, JAK/STAT-dependent promoter and AP-1-associated enhancer activity. In addition, more than 70% of EBV(+) posttransplant lymphoproliferative disorders expressed detectable PD-L1. AP-1 signaling and EBV infection represent alternative mechanisms of PD-L1 induction and extend the spectrum of tumors in which to consider PD-1 blockade.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Disrupting proton dynamics and energy metabolism for cancer therapy.

            Intense interest in the 'Warburg effect' has been revived by the discovery that hypoxia-inducible factor 1 (HIF1) reprogrammes pyruvate oxidation to lactic acid conversion; lactic acid is the end product of fermentative glycolysis. The most aggressive and invasive cancers, which are often hypoxic, rely on exacerbated glycolysis to meet the increased demand for ATP and biosynthetic precursors and also rely on robust pH-regulating systems to combat the excessive generation of lactic and carbonic acids. In this Review, we present the key pH-regulating systems and synthesize recent advances in strategies that combine the disruption of pH control with bioenergetic mechanisms. We discuss the possibility of exploiting, in rapidly growing tumours, acute cell death by 'metabolic catastrophe'.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genetics of follicular lymphoma transformation.

              Follicular lymphoma (FL) is an indolent disease, but 30%-40% of cases undergo histologic transformation to an aggressive malignancy, typically represented by diffuse large B cell lymphoma (DLBCL). The pathogenesis of this process remains largely unknown. Using whole-exome sequencing and copy-number analysis, we show here that the dominant clone of FL and transformed FL (tFL) arise by divergent evolution from a common mutated precursor through the acquisition of distinct genetic events. Mutations in epigenetic modifiers and antiapoptotic genes are introduced early in the common precursor, whereas tFL is specifically associated with alterations deregulating cell-cycle progression and DNA damage responses (CDKN2A/B, MYC, and TP53) as well as aberrant somatic hypermutation. The genomic profile of tFL shares similarities with that of germinal center B cell-type de novo DLBCL but also displays unique combinations of altered genes with diagnostic and therapeutic implications. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                PAT
                Pathobiology
                10.1159/issn.1015-2008
                Pathobiology
                S. Karger AG
                1015-2008
                1423-0291
                2019
                December 2019
                01 October 2019
                : 86
                : 5-6
                : 225-236
                Affiliations
                Institute of Medical Genetics and Pathology, University of Basel Hospital, Basel, Switzerland
                Author notes
                *Prof. Dr. med Alexandar Tzankov, Institute of Medical Genetics and Pathology, Schoenbeinstrasse 40, CH–4031 Basel (Switzerland), E-Mail alexandar.tzankov@usb.ch
                Author information
                https://orcid.org/0000-0002-0847-6156
                https://orcid.org/0000-0002-1100-3819
                Article
                502912 Pathobiology 2019;86:225–236
                10.1159/000502912
                31574515
                97ac464f-280a-4d39-96a3-17a08fcaa650
                © 2019 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 06 May 2019
                : 24 August 2019
                Page count
                Figures: 4, Pages: 12
                Categories
                Review Article

                Oncology & Radiotherapy,Pathology,Surgery,Obstetrics & Gynecology,Pharmacology & Pharmaceutical medicine,Hematology
                T-cells,Macrophages,Microenvironment,Lymphomas,Cytokines

                Comments

                Comment on this article